Conveners
WGs 1+2 Joint Session: Session 1 of 2
- Yong Ma (University of Michigan)
- David Bruhwiler (RadiaSoft LLC)
- Marlene Turner (LBNL)
- Alexey Arefiev (UC San Diego)
- Irina Petrushina (Stony Brook University)
WGs 1+2 Joint Session: Session 2 of 2
- Irina Petrushina (Stony Brook University)
- David Bruhwiler (RadiaSoft LLC)
- Marlene Turner (LBNL)
- Alexey Arefiev (UC San Diego)
- Yong Ma (University of Michigan)
Description
Joint session between Working Groups 1 & 2:
WG1 - Laser-Plasma Wakefield Acceleration
WG2 - Computation for Accelerator Physics
Lasers of sufficient intensity passing through a neutral gas will ionize the gas creating a plasma channel in its wake. A shock can propagate from this locally heated region through the created plasma and background gas, however the density of the plasma will determine the dynamics of the plasma. For collisional (high density) plasmas this can be modeled with a fluid code, however a kinetic...
Structured plasmas present myriad opportunities for acceleration and control of electron and positron beams for advanced concepts accelerators. Modeling these systems is challenging, owing to the orders of magnitude disparities in the spatiotemporal scale lengths between beam or laser and background plasma evolution. We discuss the application of the FLASH code, a publicly available MHD...
Recent results have demonstrated hydrodynamic optical-field-ionised plasma channels as being a promising plasma source for efficient, high-repetition-rate laser plasma accelerators.
Understanding the dynamics of these plasma waveguides is critical to improving their performance and for tailoring their modal properties to fit a given experimental setup. This can be challenging as the...
The Hybrid Collaboration, a joint undertaking by HZDR, DESY, University of Strathclyde, LMU, and LOA, performed hybrid LPWFA experiments which utilize electron bunches from a laser wakefield accelerator (LWFA) as drivers of a plasma wakefield stage (PWFA) to demonstrate the feasibility of compact PWFAs serving as a test bed for the efficient investigation and optimization of PWFAs and their...
In a typical laboratory plasma, there are no native positrons, which complicates attempts to develop a laser-driven positron accelerator. High-power high-intensity lasers provide an attractive opportunity to create positrons directly from light. While most attention has been focused on the multi-photon process, the process that involves two gamma-rays, the linear Breit-Wheeler (BW) process,...
Exascale computing is close to becoming a reality. As technology progresses, it has become clear that heterogeneous computing is going to stay and adapting to new hardware is an ongoing challenge. Since 2015 PIConGPU has paved the way to accelerating plasma simulations across compute platforms using the Alpaka framework. This has enabled early adaption to new compute hardware and readiness for...
Modeling plasma wakefield accelerators is computationally challenging. Using the quasi-static approximation allows for efficient modeling of demanding plasma wakefield accelerator scenarios. Here, the latest highlights of the performance-portable, 3D quasi-static particle-in-cell (PIC) code HiPACE++ are presented. HiPACE++ demonstrates orders of magnitude speed-up on modern GPU-equipped...
The electromagnetic Particle-In-Cell (PIC) code WarpX has been developed within the the U.S. Department of Energy’s Exascale Computing Project toward the modeling of plasma accelerators for future high-energy physics colliders on Exascale Supercomputers. We will present the latest multi-GPU capable physics features, such as a Coulomb collision module and a QED module. We will also report on...
The PWFA has emerged as a promising candidate for the accelerator technology used to build a future linear collider and/or light source. In this scheme witness beams are accelerated in the plasma wakefield created by a driver beam. The three-dimensional (3D) quasi-static (QS) particle-in-cell (PIC) approach, e.g., using QuickPIC, has been shown to provide high fidelity simulation capability...
Adopting a recently developed simplified model of the impact of a very short and intense laser pulse onto an inhomogeneous diluted plasma, we analitycally derive preliminary conditions on the input data (initial plasma density $\widetilde{n_0}$ and pulse profile) allowing to control the wave-breaking of the laser-driven plasma wakefield and to maximize the energy transfer to small bunches of...