The EuPRAXIA Advanced Photon Sources (EuAPS) project, led by INFN in collaboration with the CNR and the University of Tor Vergata, involves the construction of a laser-driven “betatron” X-ray user facility at the SPARC_LAB laboratory of the LNF. EuAPS also includes the development of high power (up to 1 PW at LNS) and high repetition frequency (up to 100 Hz at CNR Pisa) laser drives for...
Plasma accelerators are emerging as formidable and innovative technology thanks to their compactness and reduced costs to drive of user facilities being able to sustain several GV/m accelerating gradients at normal conducting temperature.
The EuPRAXIA@SPARC_LAB collaboration is preparing a technical design report for a multi-GeV plasma-based accelerator with outstanding electron beam quality...
The Munich Compact Light Source (MuCLS) is a tuneable, brilliant and compact hard X-ray synchrotron source. Electrons are accelerated in a classical RF-accelerator and injected into a small storage ring (4.6 m circumference). X-rays are generated via a laser-undulator, realised as a short laser pulse circulating in an enhancement cavity. Thus, the MuCLS provides incoherently-produced brilliant...
The underdense passive plasma lens (UPPL) has several features that make it uniquely attractive for the focusing high-energy electron beams. Nominally formed via laser ionization of gas in the outflow of a supersonic jet, it is a simple, ultra-compact, and easily tunable device. Because it operates in the nonlinear blowout regime, the focusing strength scales with the plasma density and lens...
While XFEL electron bunches can be manipulated for tailored x-ray generation via laser-electron interactions in select locations along the accelerator, such as laser heaters, XFEL performance is dominantly impacted by the electron bunch parameters directly after generation in the photoinjector. Optimal performance of the photoinjector requires excitation laser pulses, typically in the...
Large-core anti-resonant fibers have recently found key applications in non-linear optics. Here we report on their applications to charged beams. We show that large energy modulations can be applied via a TM01-like mode, which can be further exploited to produce attosecond microbunches. We also report on the dipole HE11-like mode, to support high-power streaking resolutions for diagnostics...
The $\lambda^2$ scaling of the ponderomotive force underpinning laser-based particle accelerators encourages the use of long wavelengths in regimes such as laser wakefield acceleration of electrons at low plasma densities. High pressure $\mathrm{CO_2}$ amplifiers are the workhorse source of such lasers, able to achieve multi-TW peak powers and picosecond pulse lengths. We are developing...
Hybrid combinations of lasers and electron beams allow LWFA->PWFA and plasma photocathodes to be realized. This is a pathway to ultrabright electron and photon pulses. Experimental progress on hybrid LWFA->PWFA, and on plasma photocathodes driven by linac-PWFA, and now also by the hybrid LWFA->PWFA approach, will be presented. Intrinsically synchronized, ultrabright electron and photon pulses...