S-band Standing-wave RF Photoguns represent the current state of the art for high brightness electron sources. These devices significantly contributed to the development of high brightness accelerators. However, the push for even brighter electron sources presents a significant technological challenge. Aiming to continue to push the boundaries of high brightness electron beams, a...
Strongly tapered free-electron lasers (FELs) offer a promising avenue towards achieving higher peak and average power radiation sources. Through the strong seeding of an input laser or microbunched electron beam, larger efficiencies can be achieved by adapting the undulator parameters to maintain resonance with the decelerated electrons. Additionally, the use of an oscillator cavity driven by...
This talk will report on the status Cathodes And Radio-frequency Interactions in Extremes (CARIE) high gradient C-band RF photoinjector project at Los Alamos. Modern applications such as X-ray sources require electron beams with ultra-low emittance and very high brightness that may be achieved by accelerating the electron beam produced in an RF photoinjector with electric field higher than 100...
Methods for realizing resonant cavities with high field gradients have been studied in the last years. Cavities are often made of copper, which however has too low work function (WF) (thus eventually leading to dark currents) and tends to produce uncontrolled discharges (breakdowns) which might damage the copper surface, finally degrading the cavity performance. For this reason, the idea of...
The Photo Injector Test facility at DESY in Zeuthen (PITZ) develops high brightness photocathode RF guns, advanced diagnostics and applications of the high brightness electron beams, which currently can be accelerated up to 22 MeV. In this talk, we will present the latest development at the L-band normal conducting photoinjector (e.g., new prototype RF gun Gun5.1, photocathode laser shaping...
Ultra-short pulsed electron beam has a wide range of applications in accelerator-based X-ray sources, wakefield acceleration, ultrafast electron microscopy, etc. Using pump-probe technology, MeV ultrafast electron diffraction (MeV-UED) can reveal the ultrafast dynamic processes of matter changes at the atomic scale. Further improving its temporal resolution to few-fs or even sub-fs will open...