

Project Status

Steve Peggs

peggs@bnl.gov

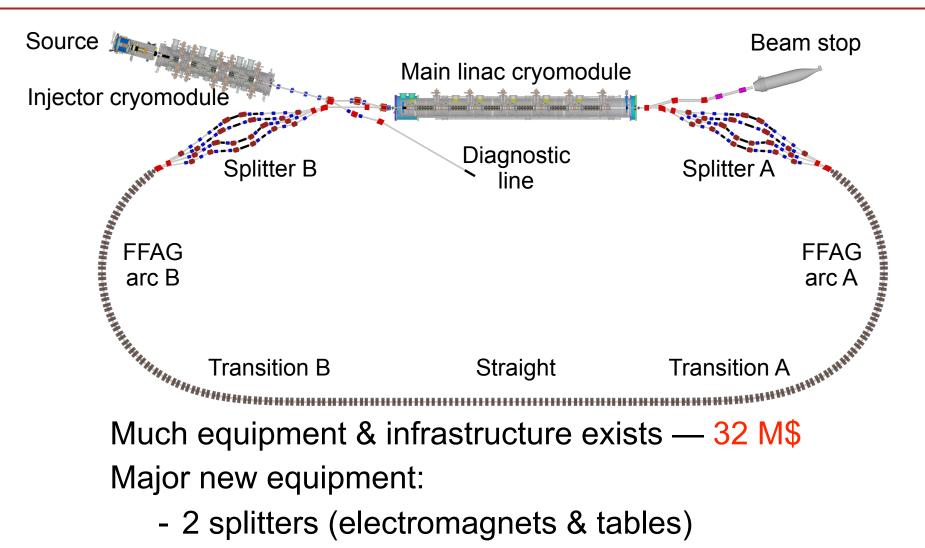
Technical Review, 170130

1

Scope

In collaboration with Cornell University, test & develop a multiturn Energy Recovery Linac using a single FFAG return loop with an energy acceptance factor of up to 4, at Cornell

Relocate Cornell's existing:

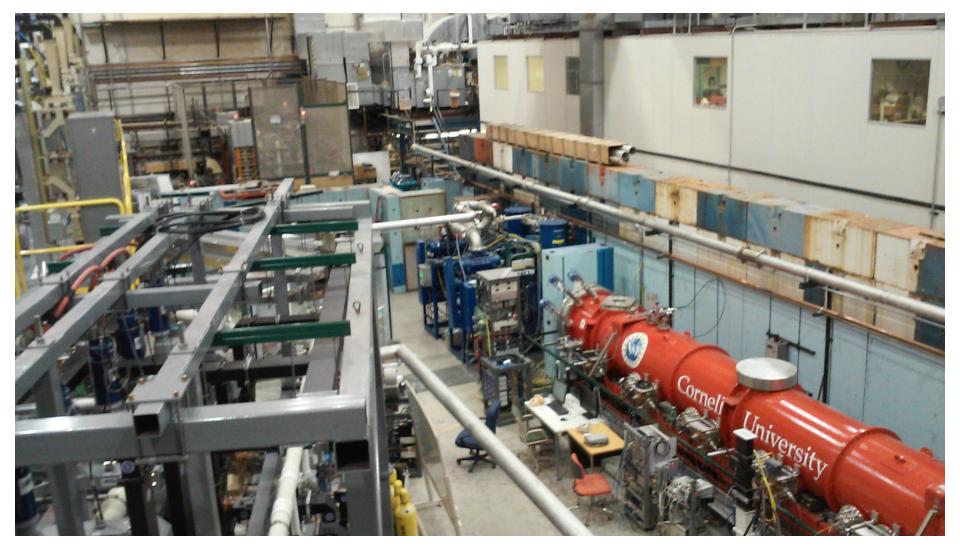

- Gun with its laser system
- Injector Cryo-Module & Main Linac Cryomodule (MLC)
- Merger system
- High-power beam stop

Move the associated RF-power system, cryogenic system, & electrical controls.

Install a single FFAG return loop for multi-turns with separator & combiner sections that connect the arc to the MLC.

Commission & operate with 1 mA, increasing towards 40 mA.

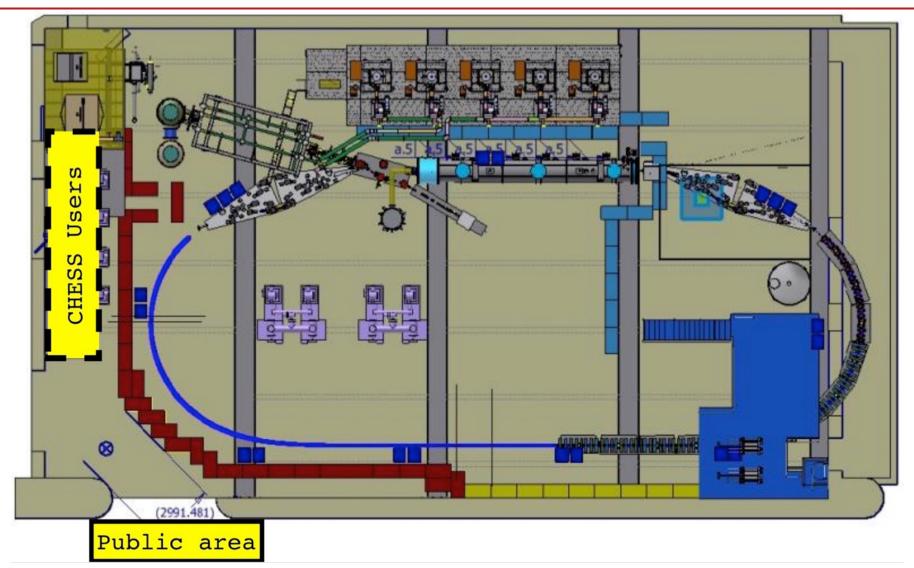
Existing & new equipment



- FFAG arc permanent magnets
- Diagnostics, power supplies etc.

Technical Review, 170130

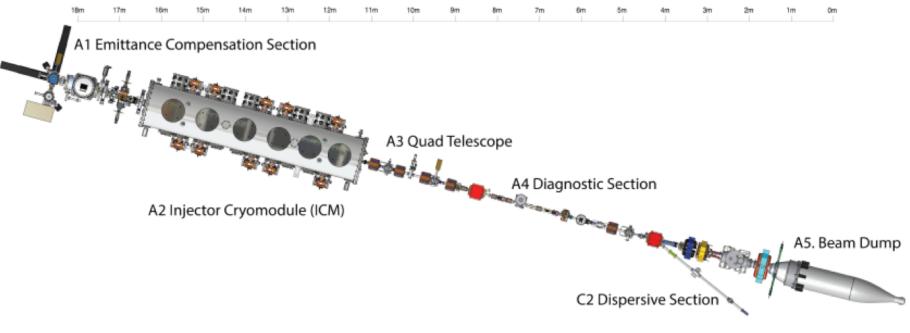
CBET


L0E hall — Jan 2017

(Rich Gallagher)

CBET

Shielding layout — 2019



(Brian Heltsley)

CBET

Beam commissioning phases

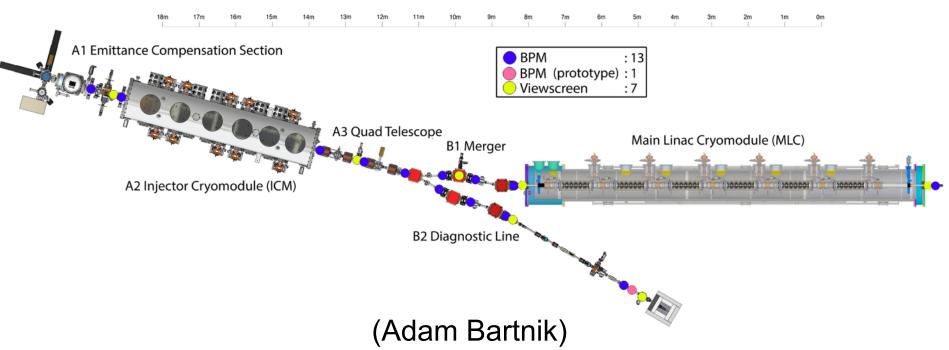
Dec 2016

(Colwyn Gulliford)

Installed in LOE experimental hall

All subsystems tested

Initial beam recommissioning already performed

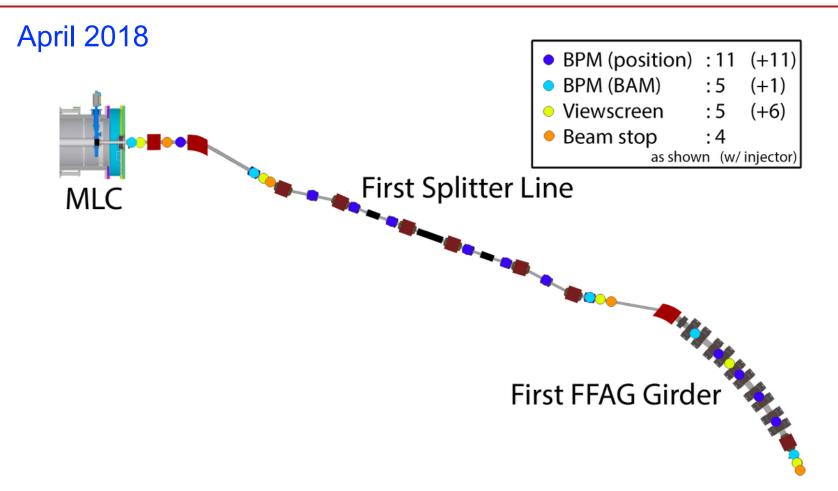

peggs@bnl.gov

Technical Review, 170130

CBETAX

Main Linac Cryomodule

August 2017



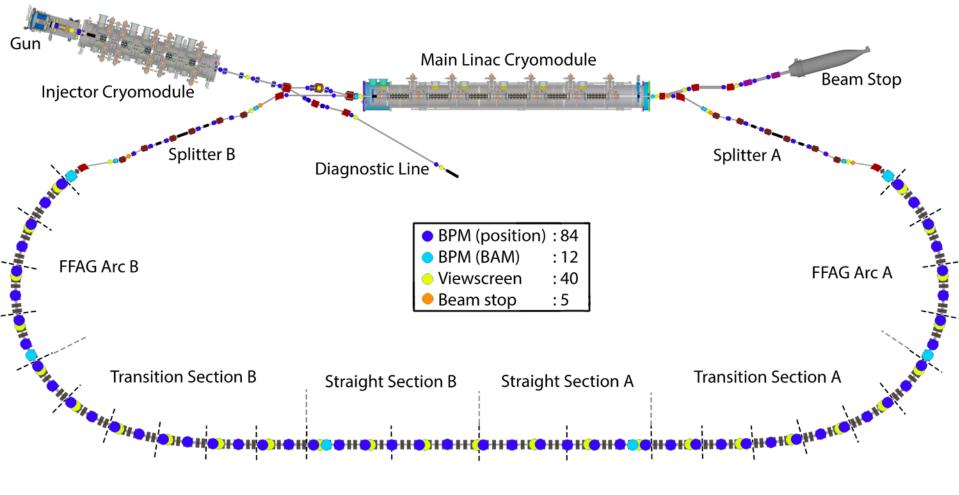
MLC cavities have been individually power tested, without beam.

Solid state amplifiers (6) being procured.

Beam commissioning will meet "go/no-go" milestone 1.

Fractional Arc Test

Will address several "first article" issues.


Commissioning will meet "go/no-go" milestone 2.

CBETAX

Single pass with ER

CBET

October 2019

Meet beam KPPs.

CBET

The 42-month timeline of milestones includes 2 "go/no-go" milestones requested by NYSERDA: 4 & 6

#	NYSERDA milestone	Baseline	Actual	Forecast
	NYSERDA funding start date		31-Oct-16	
1	Engineering design documentation complete	31-Jan-17		31-Jan-17
2	Prototype girder assembled	30-Apr-17		30-Apr-17
3	Magnet production approved	30-Jun-17		30-Jun-17
4	Beam through Main Linac Cryomodule	31-Aug-17		31-Aug-17
5	First production hybrid magnet tested	31-Dec-17		31-Dec-17
6	Fractional Arc Test: beam through MLC & girder	30-Apr-18		30-Apr-18
7	Girder production run complete	30-Nov-18		30-Nov-18
8	Final assembly & pre-beam commissioning complete	28-Feb-19		28-Feb-19
9	Single pass beam with factor of 2 energy scan	30-Jun-18		30-Jun-18
10	Single pass beam with energy recovery	31-Oct-19		31-Oct-19
11	Four pass beam with energy recovery (low current)	31-Dec-19		31-Dec-19
12	Project complete	30-Apr-20		30-Apr-20

CBET

Jan 31: Engineering design documentation complete

- This Review

Apr 30: Prototype girder assembled

- 8 permanent magnets on a single 1.7 m girder
- Positively impacted by the technology switch to Halbach magnets

Aug 31: Go/no-go 1: Accelerate beam through the MLC.

The MLC will be moved into its final location for beam testing that will be completed in summer 2017.

Apr 30, 2018: Go/no-go 2: FAT: Beam through MLC and 1 girder Initial configuration of 1 splitter line & 1 prototype girder.

"Engineering design documentation complete"

As presented in the charge:

"The Committee is asked to review whether the design of the project will be able to support the design performance and whether the engineering design of the project, including all technical subsystems, is sufficiently complete to proceed to detailed designs and start of construction."

Thus, the project interprets this Advisory Committee meeting as the equivalent of a DOE "CD-2" review.

Achieving this first milestone on time is crucial to maintaining & developing good relations, especially financial, with NYSERDA.

Key Performance Parameters, are single turn (with 4-turn capability installed.

- when met, enable a "CD4" success

Design parameters are the stretch goals — how far is the stretch?

Parameter	Unit	КРР	Design
Electron beam energy	MeV		150
Electron bunch charge	pC		123
Gun current	mA	1	40
Bunch repetition rate (gun)	MHz		325
RF frequency	MHz	1300	1300
Injector energy	MeV		6
RF operation mode			CW
Number of ERL turns		1	4
Energy aperture of arc		2	4

Documentation

Stable documentation

Design Report: Released Jan 27, describing baseline lattice "161117".

Risk Register: Mature, but with continuing maintenance & development.

Baseline parameters: Spreadsheet-based "database" is under configuration control, but easy to use.

- Component count stability is crucial for C&S

Project Management Plan: Revision 1 on Jan 27: e.g. PD, PM, DPM

Technical notes: Past & future technical documentation is being consolidated.

Design Report

CBETA Design Report

Cornell-Brookhaven ERL Test Accelerator

Principal Investigators: G. Hoffstaetter and D. Trbojevic

Editor: C. Mayes

Contributors: J. Barley, I. Bazarov, A. Bartnik, I. Ben-Zvi, J. S. Berg, M. Blaskiewicz, S. Brooks, D. Burke, J. Crittenden, J. Dobbins, D. Douglas, B. Dunham, R. Eichhorn, F. Furuta, C. Franck, R. Gallagher, C. Gulliford, B. Heltsley, G. Hoffstaetter, V. Kostroun, Y. Li, M. Liepe, W. Lou, G. Mahler, C. Mayes, W. Meng, F. Méot, R. Michnoff, M. Minty, S. Panuganti, R. Patterson, S. Peggs, V. Ptitsyn, T. Roser, D. Sabol, E. Smith, K. Smolenski, P. Thieberger, J. Tuozzolo, D. Trbojevic, N. Tsoupas, G. Wang, H. Witte, W. Xu

Baseline lattice 161127 was optimized for hybrid (iron) magnets in the arcs.

Since then Halbach magnets have been adopted for use in the FFAG arcs.

To first order the baseline lattice is unchanged — "swap out, swap in".

(Editor: Chris Mayes)

Nonetheless the baseline lattice needs further fine-tuning for Halbach optimisation.

Minor lattice evolution will continue in the future, under configuration control.

- e.g. through the parameter lists and the Baseline Control Board.
- magnet moves at the level of < 10 mm

Baseline parameters

Parameters & risks

170128 Baseline parameters Risk register 170123

Organization

170123 WBS chart 170123 Organization chart 170127 Project Management Plan

Work Breakdown Structure

161019 Under development Dictionary

Reviews

- 161220 Magnet Buildability Review
- Advisory Committee Technical Review 170130
- Directors Review Cost & Schedule 170206

Technical notes

Index Date Author(s) Title Comment 0000 141216 Bazarov, Ben-Zvi et al A whitepaper: The Cornell-BNL FFAG-ERL Test Accelerator 0001 161229 Brooks Magnet & lattice specifications for the CBETA first girder 0002 161215 Brooks Halbach magnets risks & challenges Halbach magnets outline construction method 0003 161028 Brooks, Trbojevic, Tsoupas, Mahler 0004 170112 Karl, Trbojevic Survey procedure CBETA Design Report 96 Mbyte

170124 Ed. Mayes, et al

Parameters & risks are under administrative control & maintenance at the CBETA home page:

www.classe.cornell.edu/CBETA PM

Parameters: an XI S file with one sheet per L2 plus other sheets ...

peggs@bnl.gov

Technical Review, 170130

... e.g. component counts:

COMPONENT COUNTS

27-Jan-17

WBS 1.2 Accelerator Physics	170128			Component count by sector											
Component	Name/description	TOTAL	Sector:	IN	LA	SX	FA	TA	ZA	ZB	TB	FB	RX	DU	Г
1.5 MAGNETS															
Conventional dipole		44		3		18							18	3	2
Conventional quadrupole		76		4	1	32							32	3	- 4
FFAG type QF		108				1	16	24	13	13	24	16	1		
FFAG type QD		107				1	16	24	13	12	24	16	1		
Common dipole		4				2							2		
Septum dipole		8				4							4		
1.9 INSTRUMENTATION															
LLRF DAQ/Controllers		12		6	6										
Beam Position Monitor (BPM) pickups (MLC test)	13 existing, one new style w/ transition pipe	14		7	2										5
Beam Position Monitor (BPM) pickups (final)		191		7	5	32	16	24	13	13	24	16	32	5	4
BPM electronics (MLC test)	9 existing w/ switches for 13, 1 V301	14		7	2									5	
BPM electronics: DAQ/Controllers (final)		138		7	5	32	8	12	7	6	12	8	32	5	4
View-screen DAQ/Controllers (1 pass)	7 existing, IN, LA, DI	40		2	2	2	4	6	4	3	6	4	2	2	3
View-screen DAQ/Controllers (multi pass)	7 existing, IN, LA, DI	40		2	2	8	2	3	3	2	3	2	8	2	3
Beam Loss Monitors (BLM)		48		8	6	4	4	6	3	3	6	4	4		
Bunch Arrival Monitors (BAM) (final)		16				8							8		
Bunch Arrival Monitor (1 pass)		12			2	2	2		1	1		2	2		
Beam Current Monitor		2		1										1	
Emittance Measurement		1		-										-	1
Beam stops	Pneumatic control	17			1	8							8		•
1.10 VACUUM	Do these counts include splitters and FFAG?				•										
Instrumentation ports		52													
Gate valves		11													
NexTorr pumps		28													
CapaciTorr pumps		34													
Ion pumps		2													
Ion & Pirani gauges		8													
ion oo i nam gaagoo		0													
WBS 1.3 DC gun/injector	170115														_
Component	Name/description	Count	Comment												
SF6 tank	-	6													
New laser oscillator		1													
Stands (mirror merger installation)			80/20												
Magnets (mirror merger)		4													
Vacuum - gate valve	DM40		VAT												
Vacuum pump	NT200	1													
Vacuum pump	CT 200	2													
Vacuum - ion gauge															
Girder			80/20												

17 of 82 risks (by WBS)

WBS	ID	Risk Description	Potential Impact	L	ΙÞ	I S	2	S3 Mitigation
1.1	1	Loss of key personnel						3.2 identify possible replacements, encourage commitment to project and high morale
1.1		scrutiny	recovering from problems.					4.6 Careful focus on meeting go/no-go milestones
1.1		project schedule						5.1 diversify suppliers / shops / technicians / etc.
1.1		and technicians, due to conflict with other activities, eg CHESS- U at Cornell, or RHIC operations at BNL.	Schedule overruns, and standing army knock-on effects.	3	39	3	.0 :	3.8 Identify the most critical deficiencies as soon as possible, especially with regard to magnet design protoyping and procurement (hybrid and conventional). Develop a Resource Loaded Schedule that includes (at a high level) conflicts with other projects. Increase the relative priority of C-Beta relative to other BNL and CLASSE activities. Hire additional personnel.
1.1	5	Funding Delays or Cuts from NYSERDA	Fund not available for project to move forward	1	5 5	2	.2 !	5.0 Unless other funding sources are identified, there may be no way for the project to proceed.
1.2	1	Random field errors above levels specified in lattice requirements	Beam cannot be steered acceptably for operation with existing correctors.	2	4 8	2	.8 4	4.2 Re-engineering of magnets. Re-design correctors with increased strength. Or run temporarily with worse emittance.
1.2	2	Magnetisation of blocks systematically lower or higher than specified range	Forced to lower or higher energy	2	2 4	2	.0	2.4 Lower or higher linac energy by a few percent.
1.2			changes in tune range	2	1 2	1	.4	2.0 Tweak linac energy to adjust tune and orbit range if desired, but probably just ignore.
1.2	4	Systematic difference in fields, from crosstalk or single-magnet effects, resulting in larger orbit differences	Orbit differences above 1 mm, dynamically unimportant changes in tune range	1	2 2	1	.4	2.0 Systematically offset arc and transition magnets.Tweak linac energy.
1.2	5	Systematic difference in fields, from crosstalk or single-magnet effects, resulting in unacceptably large tune	Operating tune range will not allow a factor of 4 in energy	1	3 3	1	.7 :	3.0 Adjust linac energy to allow factor of 4 in energy. Systematic quadrupole offset. Downgrade one quadrupole class with shunts to adjust tune range.
1.2	6	, , , , , , , , , , , , , , , , , , , ,	Correction algorithm not as effective as expected. Design corrector strength not as effective as expected.	2	3 6	2	.4	3.2 Rewrite correction algorithm. Minor re-design of correctors.
1.2	7	Corrector strengths unexpectedly low.	Beam cannot be steered acceptably for operation with existing correctors.	1	4 4	2	.0 4	1.0 Re-design correctors with increased strength.
1.2	8		Beam loss impairs energy recovery. Radiation beyond permitted bounds.	2	4 8	2	.8 4	4.2 Replace power supplies. Add filtering circuitry. Improve response of corrector systems.
1.3	1	gun failure / insulator punchthough / problem with HVPS						4.2 have backup gun, but BNL has backup HVPS in RHIC, Have a 2mA 500KV Glassman PS
1.3	2	Buncher IOT Tube						2.4 \$\$\$ to repair
1.3	3	Vacuum / diagnostic failure	fairly likely, but minor impact	2	2 4	2	.0	2.4
1.3	4	Cathode preparation issues (FE problems recently)						4.0 Multiple cathode growth systems / more trained experts in cathode growth. Better growth system diagnostics and testing.

When asked for 3 top risks (Oct 2016): CBET

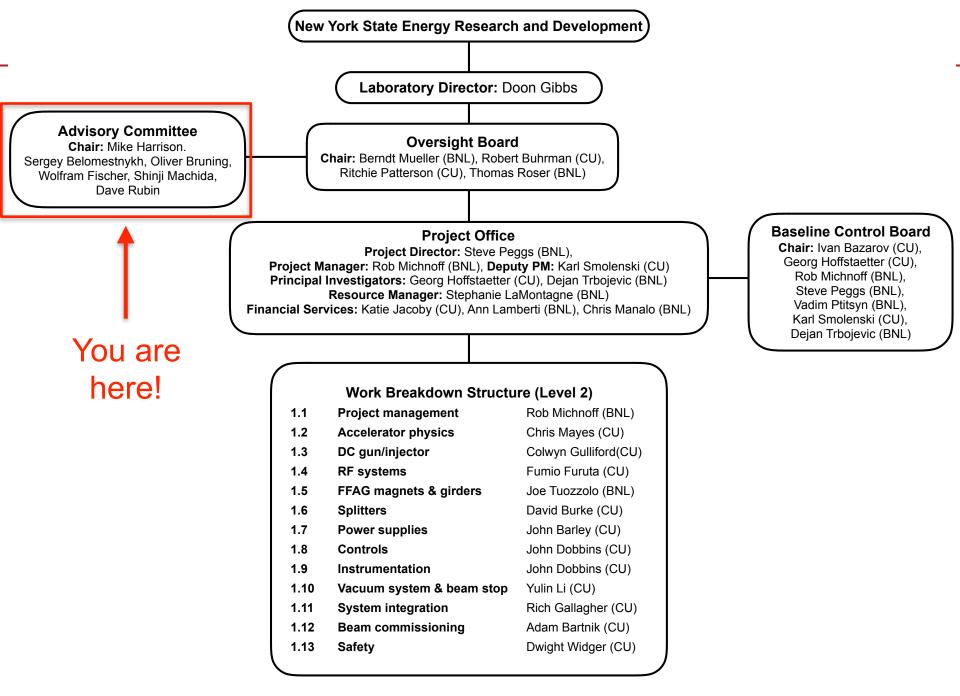
-	i otentiai	5	Sco	re		
Risk Description	Impact	L	T	L×I	Mitigation	Comment
Main Linac Cryomodule acquires an internal problem, such as a vacuum leak, that requires extensive dismantling, repair and reconstruction	The MLC would take many months to repair, and would absorb a significant amount of labor.	2	4	8	Almost none, except for prevention: exercising great care during the relocation and beam-testing required for go/no-go milestone 1.	The MLC is a complex cryogenic with high power RF and high-vacuum sub- systems. It has mostly been tested, although not yet at full power, nor with beam.
performance and potential slow procurement, but also from protoype girder	Schedule impact leading to cost overruns. Vendor cost overruns.	3	3	9	Support the hybrid magnet design team with adequate technical personnel. Prepare and review the procurement plan, and the parts flow choreography, as comprehensively and as early as possible. Assemble and construct the 8-magnet prototype girder in-house at BNL. Monitor a geographically close magnet vendor carefully, offering technical assistance as necessary.	relatively simple but somewhat unusual magnet has gone slower than desired. BNL procurement process can be slow.
Insufficient human resource availaibility, especially engineers and technicians, due to conflict with other	Schedule overruns, and standing army knock-on effects.	3	3	9	Identify the most critical deficiencies as soon as possible, especially with regard to magnet design protoyping and procurement (hybrid and conventional). Develop a Resource Loaded Schedule that includes (at a high level) conflicts with other projects. Increase the relative priority of C-Beta relative to other BNL and CLASSE activities. Hire additional personnel.	

peggs@bnl.gov

Project management

Project Management Plan

Table of Contents


1.0	INTRODUCTION	5
	1.1 Project Description	5
2.0	PROJECT SCOPE	7
	 2.1 Technical Scope 2.2 Key Performance Parameters	7 8
3.0	CHANGE CONTROL	11
4.0	MANAGEMENT STRUCTURE - ROLES AND RESPONSIBILITIES	12
	 4.1 Project Oversight	12 12 12 12 12 13 13 13 14 14 14
5.0	 PROJECT MANAGEMENT AND OVERSIGHT. 5.1 Risk and Contingency Management	16 16
6.0	GLOSSARY	

Revision: 1/27/17

Closely follows the contents of the legal contract between BNL & the New York State Energy Research & Development Agency

CBETOX

Oversight Board: Two BNL & two Cornell members, chaired by BNL.

Advisory Committee: A standing committee that can be asked for advice by both the OB & the Project Office.

Baseline Control Board: Chair from CU + 6 others.

- Decisions by consensus whenever possible.

Project Office: 1 Director, 1 Manager, 1 Deputy Manager,

2 Pl's, 1 Resource Manager, financial services support.

- Coordinates CLASSE & C-AD activities.

Baseline Control Board 1/19/2017 (Summary)

The Baseline Control Board (BCB) has reviewed the following two changes to the CBETA project:

- The harmonic number change, in which the circumference length of the recirculation has changed from h = 333 to h = 343 as measured in RF periods (1.3 GHz RF frequency).
- 2) The adoption of Halbach instead of hybrid magnets for the project.

The details of the changes can be found at the end of the document as Appendices 1 and 2. Note: the decision to recommend the Halbach option for magnets was preceded by a separate CBETA Magnet Buildability Review in Dec 2016 chaired by T. Tanabe / consultation with the Oversight Board.

Outcome

The BCB members: I. Bazarov (chair), V. Ptitsin, G. Hoffstaetter, D. Trbojevic, S. Peggs, K. Smolenski

Result: The BCB has voted unanimously to adopt the proposed changes to the new baseline (h = 343 and using Halbach magnets).

CBETAX

Change control

Level	Cost	Schedule and Risk	Technical Scope
Oversight Board	Costs needs that surpass the total project cost	Project Milestones, Review Milestones, review scopes	Changes of Key Performance Parameters and design parameters
Management Board	Contingency allocations	L2 subsystem completion dates and risks	Baseline changes, after consultation with the Baseline Control Board
Project Manager & Deputy Project Manager	Allocations at L2 larger than \$10k, without contingency	Milestone changes that do not affect L2 completion dates or risks	Changes that do not affect the baseline
Cost Account Managers	Allocations at L3 less than \$10k, without contingency	Changes that do not affect L3 milestones	Changes that do not affect technical deliverables

"Expected quarterly cash flow [from NYSERDA] is subject to change on a monthly basis as the project is implemented."

Invoices submitted monthly will vary according to the precise timing of equipment purchases.

Year	Q1 (\$M)	Q2 (\$M)	Q3 (\$M)	Q4 (\$M)	Sub-total (\$M)
1	1.7	1.9	2.1	2.3	8.0
2	2.3	2.3	2.3	2.0	8.9
3	1.7	1.3	1.3	1.3	5.6
4	1.3	1.2			2.5
Total					25.0

CRET

The Total Estimated Cost of \$25.0M includes contingency, which is owned by the Project Office.

Cost estimates will soon be discussed in detail.

- C&S Directors Review, Feb 6 & 7, at BNL.

Value engineering & C&S optimization will continue.

Concerns

Concerns

Cost: Developing & distributing an adequate contingency at a fixed TEC while improving depth & accuracy.

Schedule: Achieving early NYSERDA milestones (especially prototype girder) while generating a project schedule consistent with cost sheet structure.

Technical: Understanding the detailed implications of the Halbach decision.

Ensuring design & specification consistency — configuration control — while applying value engineering.

Management: Enhancing efficient collaboration & communication between two cultures, 300 miles apart.