

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Baseline: Lattice & Studies

CBETA Layout in LOE

rable 1.2.1. I finally parame	ters of the Cornell-Dive Ently rest Accelerator.	
Parameter	Value	Unit
Largest energy	150	MeV
Injection energy	6	${ m MeV}$
Linac energy gain	36	${ m MeV}$
Injector current (max)	40	$\mathbf{m}\mathbf{A}$
Linac passes	8	4 accel. + 4 dece
Energy sequence in the arc	$42 \rightarrow 78 \rightarrow 114 \rightarrow 150 \rightarrow 114 \rightarrow 78 \rightarrow 42$	${ m MeV}$
RF frequency	1300.	MHz
Bunch frequency (high-current mode)	325.	MHz
Circumference harmonic	343	
Circumference length	79.0997	m
Circumference time (pass 1)	0.263848164	$\mu \mathbf{s}$
Circumference time (pass 2)	0.263845098	μs
Circumference time (pass 3)	0.263844646	μs
Circumference time (pass 4)	0.265003298	μs
Normalized transverse rms emittances	1	$\mu \mathrm{m}$
Bunch length	4	\mathbf{ps}
Typical arc beta functions	0.4	m
Typical splitter beta functions	50	m
Transverse rms bunch size (max)	1800	$\mu\mathrm{m}$
Transverse rms bunch size (min)	52	$\mu \mathrm{m}$
Bunch charge (min)	1	\mathbf{pC}
Bunch charge (max)	123	\mathbf{pC}

Table 1.2.1: Primary parameters of the Cornell-BNL ERL Test Accelerator.

Designed FFAG Arc, transition, straight

Full FFAG Arc

Space Charge optimization through LA

The beam is optimized with space charge using GPT to match specified beam sizes and divergence at the end of the first pass of the Linac.

Splitters (SX, RX)

- Receive beams on-axis from LA
- Match each energy beam onto its stable orbit in FA
- Match optics for each energy beam
- Momentum compaction (r56) adjustment
- Path lengths: (S1 + FA pass 1) = (S2 + FA pass 2) = (S3 + FA pass 3)
- Allow path length adjustment by sliding joints
- Dipole fields < 0.6 T
- Quad fields < 4 T/m
- Realistic transverse element sizes

S1 optics (42 MeV)

RX Merge and Mirror Merger

Table 2.13.1: Orbit correction analysis procedure. Typically this procedure is iterated for N = 100 times.

Step	Procedure
1	Initialize design lattice
2	Calculate orbit and dispersion response matrices
3	Perturb the lattice with random set of errors
4	Apply the SVD orbit correction algorithm
5	Save this perturbed lattice
6	Track particles through, and save statistics
7	Reset the lattice
8	Repeat steps 3-7 N times

christopher.mayes@cornell.edu - January 30, 2017

Injector + Linac space charge optimization Complete 4-pass start-to-end lattice Fieldmap tracking in FFAG cell (many codes) Start-to-end tracking with no collective effects CSR 1-pass tracking

Resistive wall and roughness wakefields Orbit and optics correction Tolerance & stability analysis BBU RGS Touschek scattering Longitudinal Tails Dark current tracking & collimation Ion trapping Realistic Splitter magnet design Online model

CSR 4-pass tracking, with longitudinal phasing/shaping Halo from cathode microbunching

Well under control Straightforward but not done Difficult Caution

END

CORNELL-BNL ERL TEST ACCELERATOR

