

Main Linac Cryomodule and LLRF

Fumio Furuta, Peter Quigley Cornell University

ff97@cornell.edu, pgq1@cornell.edu

CBETA Technical Review, 30 Jan. 2017

- Introduction
- MLC status
- MLC LLRF
- Next steps

Introduction

CBETA

ff97@cornell.edu, pgq1@cornell.edu

CBETA Technical Review, 30 Jan. 2017

Main Linac Cryomodule

CBETAX

- Hosts six ERL Main Linac 7-cell cavities
- Cavity preparation: bulk BCP, 650C outgassing, final BCP, 120C bake, HF rinse

7-cell cavities and MLC parameters

Number of 7 cell cavities	6	Number of HOM loads	7
Accelerating gradient	16.2MV/m	HOM power per cavity	200 W
R/Q (linac definition)	774 Ohm	Couplers per cavity	1
■ Q _{ext}	6.0 x 10 ⁷	RF power per cavity	10 kW max
Total 2K/5K/8K loads	76 W / 70 W / 150 W	Amplitude/phase stability	10 ⁻⁴ / 0.05° (rms)
		Module length	9.8 m

Stiffened Cavity

0

0

0

0

0

Un-stiffened Cavity

Prototype MLC Cooling schematic

MLC cavity RF test at 1.8K

2nd thermal cycle w/ slow cool

• 5 of 6 cavities had achieved MLC design gradient of 16.2MV/m at 1.8K in MLC.

- Cavity#4 is limited by quench so far, no detectable radiation during test.
- Enough Voltage for 76MeV per ERL turn.

MLC cavity Q_0 at 16.2MV/m, 1.8K

initial cool • 1st thermal cycle w/ fast cool × 2nd thermal cycle w/ slow cool

- 4 of 6 cavities had achieved design Q₀ of 2.0E+10 at 1.8K.
- Enough cooling for 73MeV per ERL turn.

CBE

MLC slow tuner test

CBETAX

CBETA will have to run somewhat below 1.3GHz since some of the MLC cavities can not be tuned that far.

HOM scan analysis

Dipole HOMs on MLC were strongly damped below Q~10⁴. Consistent with HTC and simulation results.

RF Detuning Measurements

Preliminary results:

- Average detuning of stiffened cavities: ~30Hz, un-stiffened cavities: ~150Hz.
- Integrated detuning gains dramatically at 60Hz.
- Optimization studies for the piezoelectric fast tuner compensations are in progress.

Image by Nilanjan Banerjee (Graduate Student)

- Preliminary identification and isolation of vibration sources were done in the current MLC location.
- Further optimization on the MLC cooling scheme and compensation of microphonics with piezoelectric fast tuner are planned during the MLC commissioning in the beamline location.

Main Linac LLRF

Cornell LLRF system tests

CBETA

Facility	Conditions	Field stability
Requirements on CBETA	$Q_L \sim 6x10^7$ (10 Hz half bandwidth)	$\sigma_A/A \sim 1x10^{-4}$ $\sigma_{\Phi} \sim 0.02 deg$
1.5GHz ERL cavity at <u>Jlab</u>	Q _L up to 1.2x10 ⁸ (6 Hz half bandwidth) 5 mA energy recovered beam	$\sigma_A/A \sim 1x10^{-4}$ $\sigma_{\Phi} \sim 0.02 deg$
1.3GHz 9-cell cavity at HoBiCaT at <u>HZB</u>	Q _L up to 2x10 ⁸ (3 Hz bandwidth) Peak microphonics: ∼ 30 Hz)	$\sigma_A/A < 1x10^{-4}$ $\sigma_{\Phi} \sim 0.01 deg$
1.3GHz 7-cell cavity at HTC* at <u>Cornell</u>	Q _L ~ 5x10 ⁷ (13 Hz half bandwidth) Peak microphonics: ~40 Hz 5 kW solid state RF amp	σ _A /A ~ 6.5x10 ⁻⁵ σ _Φ ~ 0.01 deg

*Cornell Horizontal Test Cryomodule

- Cornell digital LLRF system for CBETA tested extensively with a wide range of parameters. Field stability meets and exceeds CBETA specifications. All digital components and control codes on hand.
- microphonics in some of the MLC cavities might be quite large (if we can't find ways of reducing it). That also would have some impact on the field stability achievable.
- CBETA requirements are quite tight, so **dedicated LLRF studies will be needed and are quite important.**

Solid State RF Amplifier Procurement (1) CBET

<u>1. The MLC requires six SSAs to:</u>

- Establish and maintain stable accelerating field in each MLC SRF cavity (one SSA per cavity needed in high loaded Q operation).
- Sufficient RF power overhead needed to
- (1) compensate significant cavity field perturbations due microphonics,
- (2) compensate residual beam loading due to return phase errors and during current ramp up,
- (3) for responses to beam instabilities and trips.
- 2. The MLC has six accelerating cavities, three "stiffened" and three "un-stiffened":
- <u>Un-stiffened cavities</u> are more susceptible to detuning due to microphonics. This condition requires more RF power to maintain RF field regulation.
- <u>Stiffened cavities</u> are less susceptible to detuning cause by microphonics. This condition requires less RF power to maintain RF field regulation.

3. Each MLC cavity has a RF power input limit of 10 kW set by the maximum RF power of the RF input coupler.

4. the plan is to acquire three SSAs at 10 kW for un-stiffened cavities and three at 5 kW for stiffened cavities. This plan should be adequate to accommodate the dynamic conditions currently anticipated for operation the MLC in CBETA.

Solid State RF Amplifier Procurement (2) CBET

- **5. Eleven companies were invited** to submit proposals to provide the SSAs, **three companies submitted proposals**. **SigmaPhi of France was chosen** for the following reasons:
- Cornell has had **experience** with SigmaPhi providing an SSA with positive results with both performance and service when needed.
- The company provided **real performance data** showing their ability to meet CBETA requirements for RF power.
- **Recommendations from other users** that have similar equipment.
- **Delivery schedule** is in line with CBETA operational schedule,.
- Flexibility providing two types of SSAs.
- SigmaPhi was the low bidder.

Next steps

L0E as of 2017 Jan 20th.

ff97@cornell.edu, pgq1@cornell.edu

CBETA Technical Review, 30 Jan. 2017

Main Linac, schedules

CBET

	2017	Items
	January	 Warm-up to room temp Preparations for moving MLC
	February 🔆	Move MLC to beamline location. (Wed. 1 Feb. 2017)
	March	Preparations for cooldown and testing-commissioning.
	April	Cooldown
	May	MLC testing-commissioning
	June	Beam through MLC into beam-stop
\downarrow	July	Water shutdown in Wilson

MLC warmed up, 4K to Room Temp.

19 January 2017, 10:30 AM MLC Currently at Room Temperature Total string growth: ~12 mm (east 6 mm, west 6 mm), Overall Growth rate ~20 μ/hr Overall warmup rate: ~1.0K/hr on the Helium Vessels, ~0.7 K/hr on 80K shield.

ff97@cornell.edu, pgq1@cornell.edu

CBETA Technical Review, 30 Jan. 2017

Move MLC to beamline location

Planed on February 1st

ff97@cornell.edu, pgq1@cornell.edu

CBETA Technical Review, 30 Jan. 2017

CBETA

Cryogenics

Summary

- Main Linac Cryomodule is commissioned, tested, and ready for CBETA.
- Main Linac SRF LLRF; most hardware existing and concept/performance fully tested.
- Some studies and optimization remain for the MLC LLRF and microphonics.

Priorities

- 1. Moving the MLC to the final location. ^(c) The day after tomorrow!
- 2. Waveguide and LLRF cable design (concepts are completed).
- 3. Moving CESR transmitter to the CLEO pit.