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Part I. Introduction to Machine Learning
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• Tasks that are extremely easy and obvious for us are difficult to program in 
traditional ways

• Impossible to learn every possible rule to perform a task

➢ learn from examples instead
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Teaching machines to learn from experience
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Teaching machines to learn from experience

Cat?
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http://yann.lecun.com/exdb/mnist/

Y. LeCun, et.al, "Gradient-based 

learning applied to document recognition"

D. Changxing, T. Dasheg, "Pose-invariant face recognition with homography-based normalization"

MNIST handwritten digits dataset

Face recognition and reconstruction
• Automatic detection of semantic regions

• Specific "layers" are sensitive to certain regions ( e.g. 

eyes, nose, lips)

• First match against Go European champion in 

2015,

5:0 for AlphaGo

• In 2017 AlphaGo surpassed the performance of 

its previous versions and became the strongest Go 

player of all time *

AlphaGo by Google

* Silver, David et al. “Mastering the game of Go without human knowledge.” Nature 550 (2017): 354-359.

http://yann.lecun.com/exdb/mnist/
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High Energy Physics

• ML is used in dark matter search, jets 

recognition, particle tracking, neutrino 

classification, shower simulations

Ben Nachman, CERN 

Data Science Seminars

Medical Research: COVID-19

• > 1000 articles no arxiv.org related to ML applications 

to COVID19 research.

• Mostly image processing (x-ray images) and modeling 

of transmission.
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Relevant ML concepts and definitions

Supervised Learning Unsupervised Learning Reinforcement Learning

• Input/output pairs available
• Make prediction for unknown 

input based on experience 
from given examples

• Only input data is given
• Learn structures and 

patterns

• No training data
• Interact with an environment
• Trying to learn optimal 

sequences of decisions

* Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, 1997.

Object detection in computer 
vision, speech recognition, 

predictive control

Anomaly detection, pattern 
recognition, clustering, 

dimensionality reduction

Robotics, industrial automation, 
dialog systems

"… computer programs and algorithms that automatically improve with experience by learning from 
examples with respect to some class of task and performance measure, without being 
explicitly programmed." *



How does the learning work in practice?

9

Cat

1. Collect examples 2. Preliminary processing 3. Training, tuning, validation 4. Prediction

Data sample
Input Features Model

Output
(target variable)

Supervised Learning
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Supervised Learning

Training 
input data

Function with adjustable 
parameters (weights, bias)

Model 
output

Training 
output data

Compute the loss (approximation error ):
e.g. MSE, MAEexample 1

example 2
example 3
.
.
. 𝒚 = 𝒇 ෍𝒙𝒊𝒘𝒊+ 𝒃

Neural Network as an example:

➢ Weights w of the inputs x

➢ Activation function f

➢ Output y of a single neuron: 𝑦 = 𝑓 σ𝑥𝑖𝑤 + 𝑏

How does the learning work in practice?

Universal Approximation Theorem: A simple neural network including only a single 
hidden layer can approximate any bounded continuous target function with arbitrary 
small error. (Cybenko, 1989, for sigmoid activation functions)

w1

w2

w3

x1

x2

x3

Input

Activation function

fΣ

Weighted sum

b
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Activation function

fΣ

Weighted sum

Adjust parameters
Minimizing the loss

e.g. Gradient Descent

b
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Training and generalization: no perfect model needed!

Simple models underfit
• Derivate from data (high bias)
• Do not correspond to data structure

(low variance)

Complex models overfit
• Very low systematical deviation (low bias)
• Very sensitive to data (high variance)

We don‘t want „look up tables“
We don‘t want unreliable prediction

→ Bias-Variance tradeoff



• Regression and Classification Models: resolve correlation between input variables and 
dependent target variables

• Simple Linear Regression, Multivariate Regression, Logistic regression, Support Vector Machine

• Dimensionality reduction techniques: reduce the number of independent variables 
(features) without significant decrease on prediction accuracy

• Independent Component Analysis, Principle Component Analysis, Features Importance Analysis

• Decision Trees: split the input data based on a sequence of variables (thresholds) to estimate 
the target output value or to separate data points into regions

• Ensemble methods: Train several slightly different models and take majority vote/ average of the prediction

• Clustering: grouping or separating data objects into clusters
• Identify hidden patterns in the data, similarities and differences
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ML is more than Neural Networks…
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ML is more than Neural Networks…

Machine Learning is about learning from the data, not about 
application of a particular “intelligent” technique.



Accelerators

Limitations of traditional 
optimization and modeling tools?
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ML is a powerful 
tool for prediction and 

data analysis

Which limitations can be solved by ML 
with reasonable effort?

ML and accelerators: motivation

➢ How to deal with previously unobservable behavior?
➢ Required computational resources for large amount of optimization targets
➢ Objective functions, specific rules and thresholds have to be known
➢ Non-linear interacting sub-systems, rapidly changing behavior. 

Machine Learning methods can learn an arbitrary model from 
given examples without requiring explicit rules.
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Adapting typical ML tasks to accelerator-specific problems

Image processing using Convolutional 
Neural Networks is a very common 
approach in ML research.

→ Image-based prediction of multiple beam parameters

"First steps toward incorporating image based diagnostics 
into particle accelerator control systems using Convolutional 
Neural Network", A.L. Edelen et al. NAPAC16 (TUPOA51)

• CNN and fully-connected ANN are used to incorporate 
image-based and non-image-based data into the model to 
predict multiple beam parameters via regression.

Predict the probability of an 
object present in a picture
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Adapting typical ML tasks to accelerator-specific problems

Reinforcement Learning is widely applied in 
robotics in control systems in general.

(Coherent Synchrotron Radiation)

(Radiofrequency 
cavities)

→ Automatic sub-systems tuning to achieve optimal machine performance
T. Boltz et al. “Feedback Design for Control of the Micro-Bunching Instability based 
on Reinforcement Learning”, IPAC’19 (MOPGW017)
• Instabilities resulting from self-interaction of the bunch with its own radiation 

field limits stable operation.
• Fast and adaptive feedback system to stabilize the dynamics is required.

→ Reinforcement Learning model based on “actions” = modifications in RF
and CSR signal as “reward”.

Learn how to walk/ jump/  
avoid obstacles
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Adapting typical ML tasks to accelerator-specific problems

Classification models become more robust by combining 
several models (Ensemble Learning)

→ Robust classification of operational events

Automatic alignment of collimators (G. Azzopardi et al., 
“Operational results on the fully automatic LHC collimator 
alignment”, Phys. Rev. Accel. Beams 22, 093001 (2019))

• Collimators have to be realigned during operation due to 
beam parameter changes .

• If beam loss spike is above a pre-selected threshold, the 
collimator is stopped: requires an expert to determine if the 
collimator actually has touched the beam.

• Input: spike height, 
exponential decay and 
collimator position​.

• Output: if collimator is 
aligned or not. 
(classification)

• Ensemble of several ML methods used – use the majority vote of all models.
• Developed ML technique became standard for fully automatic LHC 

collimators alignment.

Classification algorithms 
“vote” for final decision.
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ML for Beam Optics Measurements and Corrections at the LHC

Importance of Beam Optics Control in Colliders:

• Control of the beam size in Interaction Points (IPs) to increase the chances of a collision. 
→ Luminosity: the ratio of the number of collisions in a certain time to the interaction cross-section area.

• Beam Optics imperfections can lead to machine safety issues.

Courtesy of J. Jowett



• Optics measurements are based on the signal of Beam Position Monitors: record the position of the beam 
at several thousands of turns.

• Corrections aim to minimize the difference between the measured and design optics by changing the 
strength of quadrupole magnets installed around the ring.
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ML for Beam Optics Measurements and Corrections at the LHC

Detection of BPM failures

• Robust optics measurements 
rely on BPMs integrity.

• Applying traditional 
techniques, few faulty BPMs 
remain in the data.

→ Detection of BPM failures prior to 
optics computation using 
unsupervised learning.

Magnetic field errors

• The deviations from design 
optics are caused by magnetic 
field errors.

→ Estimation of field errors 
currently present in the machine 
based on measured optics. 

Missing or noisy measurements

• In case of BPMs failures the 
signal and the optics function 
computation at the location is 
missing.

→ Denoising and reconstruction of 
optics measurements using Neural 
Networks.

→ Tasks to be (potentially) solved using Machine Learning
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I. Detection of faulty Beam Position Monitors 
Presence of remaining faulty signal can be observed only in the last analysis step – optics reconstructed from BPM 
signal: manual cleaning and repeating optics computation are required.

→ Unsupervised Learning using Isolation Forest (Ensemble of Decision Trees) 

➢ Random splits aiming to “isolate” each point.

➢ The less splits are needed, the more “anomalous”.

➢ Expected proportion of outliers is a parameter of the algorithm.

→ Ability to identify anomalies without predefined thresholds or rules.

Causes unphysical values in 
reconstructed optics, but how to 

detect before analysis?

BPM measurement

Detection of faulty signal 
prior to optics computation
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Presence of remaining faulty signal can be observed only in the last analysis step – optics reconstructed from BPM 
signal: manual cleaning and repeating optics computation are required.

→ Unsupervised Learning using Isolation Forest (Ensemble of Decision Trees) 

➢ Random splits aiming to “isolate” each point.

➢ The less splits are needed, the more “anomalous”.

➢ Expected proportion of outliers is a parameter of the algorithm.

→ Ability to identify anomalies without predefined thresholds or rules.

Causes unphysical values in 
reconstructed optics, but how to 

detect before analysis?

BPM measurement

Detection of faulty signal 
prior to optics computation

Avoid the appearance of 
erroneous optics computation

✓ Fully integrated into optics measurements at LHC
✓ Successfully used in operation under different optics settings.

I. Detection of faulty Beam Position Monitors 
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II. Estimation of quadrupole errors
How to get the entire set of currently present magnet 
errors in one step? 

→ Train supervised regression model to predict 
magnet errors from optics perturbations caused by 
these errors.
→ Large dataset is needed in order to train a 
regression model: simulations!

Training ML- regression model:
• Input: simulated optics functions at different BPM 

locations (adding realistic noise estimated from the 
measurements).

• Output: randomly generated magnet errors which 
produce the perturbation in the simulated optics used 
as model input

• Using Linear Regression as baseline model (fast to 
train and easy to interpret).
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Supervised Learning allows to determine 
realistic quadrupole errors directly from 

measured optics.

• 75 000 samples from simulations (80% training, 20% test)
• Test data: Comparing true simulated magnet errors and 

model output.
• Systematic error of prediction 16%, random error ~30%

Prediction of simulated individual magnet errors. Test on LHC optics measurements, uncorrected machine

Magnet errors predicted with ML-model 
reproduce the measured β -beating with

average rms error of 5%

II. Estimation of quadrupole errors: validation

True magnet errors are unknown: 
→ Simulate optics perturbation with predicted errors
→ Compare to measurement used as input.
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• Phase advance between the BPMs is the main signal property for the optics computation.
• Quality of magnet errors prediction depends on noise in the input data and the number of available BPMs:

III. Denoising and Reconstruction of phase measurements

→ Autoencoder Neural Network to denoise and reconstruct phase measurements.

First results on simulations:
→ Phase advance measurements at simulated 
missing BPMs reconstructed with 1% accuracy.
→ Noise is reduced by a factor of 2.
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Potentially useful, but not (widely) used yet
Some ideas…

• Transfer Learning

- Train model on one problem domain, apply on another task after short re-training,
- Data set required for re-training can be much smaller than data set used in initial training,
- Real-time application (e.g. re-training using data recorded in operation), 
possibility to take advantage from previous efforts.

• Inverted Models 

- Train to predict a set of output targets from a set of input parameters.

- Invert the model and use the learned correlation to predict the “input” parameters from targets,

e.g. to predict settings from desired beam properties.

• Text processing
- Logbooks contain a lot of unstructured information, which can be relevant to build 

automation/control ML tools.
- Extract relevant information automatically by analyzing text entries using e.g. Ontology Learning.
- Use extracted information to build models for machine components failures prediction, to automatize 

operation, etc.



Frameworks to use:

• Prototyping, fast and easy implementation (very good documentation):
http://scikit-learn.org/

• High-level package for Neural Networks: – https://keras.io/

• Deep Learning, specific complex model architectures:
https://www.tensorflow.org/
http://deeplearning.net/software/theano/

• Reinforcement Learning: OpenAI Gym https://gym.openai.com/
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Practical advice
• Feature engineering is highly important! Rescaling, denoising, outlier elimination...

➢ data vizualisation can help
• Start with simple models (increase the model complexity (e.g. applying Neural Networks) only if really needed.
• Well structured data, extendable architecture of existing frameworks
→ possibility for the integration of ML tools.

• Estimate model generalization (split into training, test and validation sets)

http://scikit-learn.org/
https://keras.io/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://gym.openai.com/
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Optimization and 
operation 

automation

Virtual 
Diagnostics

Beam control 
and lattice 

imperfection 
corrections

Detection of 
instrumentation 

failures

➢ Defining a narrow task (optimization of 
specific parameters rather than the entire 
machine)

➢ Performance measure of selected model 
(beam size, pulse energy, …)

➢ e.g. when no analytical solution is 
available, rapidly changing systems, 
no direct measurements are possible.

Summary: Where can we use ML in accelerators?

Important to identify where ML can surpass traditional methods
How much effort is needed to implement a ML solution? Is appropriate infrastructure for data 

acquisition available? Enough resources to perform the training?



Thank you for your attention!
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Cat!
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Automation of particular 
components 

Supervised techniques for 
classification: Decision Trees, 
SVR, Logistic Regression, NN

Saving operation time, 
reducing human intervention, 

preventing subjective decisions

Dedicated machine time 
usually required to collect 

training data and to fine tune 
developed methods.

• Online optimization of 
several targets which are 
coupled

• Unexpected drifts, 
continuous settings 
readjustment needed to 
maintain beam quality

Reinforcement Learning,
Bayesian optimization,

Gaussian Process,
Adaptive Feedback

Simultaneous optimization 
targeting several beam 

properties, automatically 
finding trade-off between 

optimization targets, allows 
faster tuning offering more 

user time.

Ensuring that all important  
properties are included as 

optimization targets.

• Detection of anomalies Unsupervised methods: 
clustering, ensembles of 

decision trees (e.g. Isolation 
Forest), supervised 

classification, Recurrent NN for 
time-series data.

Preventing faults before they 
appear, no need to define 

rules/ thresholds,
no training is needed and can 

be directly applied on received 
data

In unsupervised methods, 
usually no “ground truth” is 
available →methods can be 

verified on simulations.
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Computationally heavy, 
slow simulations

• Reconstruct unknown 
properties from 
measurements

Supervised Regression models, 
NN for non-linear problems

Learning underlying physics 
directly from the data, faster 

execution

100% realistic simulations 
are not possible → the 

model performance will be 
as good as your data is.

• Reduction of parameter 
space e.g. for optimization

Clustering, Feature Importance 
Analysis using Decision trees

Speed up of available methods, 
simpler defined problems, easier 

to interpret

Parameter selection and 
combination (feature 
engineering) can have 

significant impact on ML 
methods performance

• Missing or too noisy data Autoencoder NN Robust models, data quality Significant information 
should not be removed 

from the signal.
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Regression Models
• Linear model for input X / output Y pairs, i – number of pairs (training samples): 𝒇 𝑿,𝒘 = 𝒘𝑻𝑿

• Squared Loss function for model optimization: 𝑳 𝒘 =
𝟏

𝟐
෍

𝒊
𝒀𝒊 − 𝒇 𝑿𝒊; 𝒘

𝟐

• Find new weights minimizing the Loss function: 𝒘∗ = 𝐚𝐫𝐠𝒎𝒊𝒏𝒘𝑳(𝒘)

→ Update weights for each incoming input/output pair.

→ Regularization places constraints on the model 
parameters (weights)

- Trading some bias to reduce model variance.

- Using L2-norm: 𝜴 𝒘 =෌
𝒊
𝒘𝒊
𝟐, adding the constraint

𝜶𝜴 𝒘 to the weights update rule
- The larger the value of 𝜶, the stronger the shrinkage 

and thus the coefficients become more robust.

Too much “flexibility” in weights update can lead to overfitting
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Convolutional Neural Network
Convolutions: shared weights of neurons, but each neuron only takes subset of inputs. 

• Used for image processing
• Looks for spatially depended features  → optics is concerned by phase advance between 

neighboring BPMs
• Different deep layers look for different features
• Keras with TensorFlow backend

The composition of CNN implemented to predict 190 

correctors values to correct the optics perturbed by 

individual quadrupole errors.


