Electromagnetic Nuclear Physics Overview

Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu

June 17, 2015

Seamus Riordan — Cornell IEB 2015 Nucl. EM 1/30

... summarize the current experimental situation, and highlight opportunities for progress with high-current electron beams in the 10-500 MeV energy range.

- 10-500 MeV range covers:
 - E ~Few 100 MeV nucleon properties, lowest resonances
 - $E > \pi$ π at threshold
 - *E* ~ Few 10s MeV Nuclear excitations
- Both real and virtual γ interactions have been critical in our understanding of the strong nuclear force
- Broadly FF, neutron, isovector, and polarization observables are popular experimental areas

Nucleon Structure

- Protons and neutrons are the "ground state" of QCD
- E < 500 MeV probes non-perturbative structures
- Important to consider elastic processes (static structure), polarizabilities, and intermediate state properties

Form Factors for Nucleons

Scattering matrix element, $M \sim \frac{j_{\mu}J^{\mu}}{Q^2}$ Generalizing to spin 1/2 with arbitrary structure, one-photon exchange, using parity conservation, current conservation the current parameterized by two form factors

$$J^{\mu} = e\bar{u}(p') \left[F_{1}(q^{2})\gamma^{\nu} + i\frac{\kappa}{2M}q_{\nu}\sigma^{\mu\nu}F_{2}(q^{2}) \right] u(p)$$

Form Factors

- Dirac F₁, chirality non-flip
- Pauli F2, chirality flip

Sachs Form Factors

Replace with Sachs Form Factors

 $G_E = F_1 - \kappa \tau F_2$ $G_M = F_1 + \kappa F_2$

Limit as $Q^2 \rightarrow 0$

$$G_{E}^{p}(Q^{2} = 0) = 1, \qquad G_{M}^{p}(Q^{2} = 0) = \mu_{p} = 2.79$$

$$G_{E}^{n}(Q^{2} = 0) = 0, \qquad G_{M}^{n}(Q^{2} = 0) = \mu_{n} = -1.91$$

$$-6\frac{dG_{EM}}{dQ^{2}}\Big|_{Q^{2} \to 0} = \langle r_{EM}^{2} \rangle$$

Rosenbluth Formula

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \bigg|_{\text{Mott}} \frac{E'}{E} \bigg[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2} \bigg], \tau = \frac{Q^2}{4M^2}$$

G_E/G_M through Spin Observables

- Akhiezer and Rekalo (1968) Polarization offers access to G_E/G_M
- Typically have fewer systematic contributions from nuclear structure and radiative effects

Proton Results

• G_M^p generally follow dipole - exponential distribution

$$G_D = rac{1}{\left(1+Q^2/(0.71~{
m GeV}^2)
ight)^2}$$

- JLab, Jones et al., G_F^p different from G_M^n using polarization
 - Neglect of hard two-photon exchange can cause systematic errors in extraction
 - Results testing this are now being produced

Proton Results

• G_M^p generally follow dipole - exponential distribution

$$G_D = rac{1}{\left(1+Q^2/(0.71~{
m GeV}^2)
ight)^2}$$

- JLab, Jones et al., G_F^p different from G_M^n using polarization
 - Neglect of hard two-photon exchange can cause systematic errors in extraction
 - Results testing this are now being produced

Two-photon Exchange Results - CLAS, VEPP-III

- Results from CLAS and VEPP-III with e^+/e^- available
- Kinematic coverage over broad ϵ and Q^2 up to $\sim 1.5~{\rm GeV}^2$
- Both show definite effects of exchange and agreement with reconciliation

D. Adikaram et al Phys. Rev. Lett. 114, 062003

I.A. Rachek et al Phys. Rev. Lett. 114, 062005

Seamus Riordan — Cornell IEB 2015 Nucl. EM 8/30

Two-photon Exchange Results - OLYMPUS

OLYMPUS at DESY - Milner et al

- e^+/e^- ratio
- Will provide data up to $Q^2 = 2.2 \text{ GeV}^2$ at 1% level
- Higher Q² in addition with other data will provide stronger constraints
- Ended running in 2013 -Under analysis with hope for results at the end of 2015

Discrepancy with Muonic Hydrogen Lamb Shift

• Lamb shift breaks degeneracy in $2S_{1/2}$ and $2P_{1/2}$ - Hyperfine splitting, is sensitive to $\sqrt{\langle r_p^2\rangle}$

Nucl. EM

• $\mu\text{-hydrogen}$ more sensitive due to smaller Bohr radius, increases as $m^3,~m_\mu/m_e\sim 200$

- e(p, e') and spectroscopy agree
- μH_2 off by more than $6\sigma!$
- Missing QED effects? Proton distorting?
- New coupling to just μ^- ? Tie to $g_{\mu} - 2$ problem?

10/30

Theory and experiment review: Pohl *et al.* Annu. Rev. Nucl. Part. Sci 2013. 63: 175-204

Mainz low $Q^2 G_E^p$ results

J.C. Bernauer et al. PRL 105, 242001 (2010) Rosen. Sep.

- Rosenbluth separation of over 1400 cross sections from Mainz, Q^2 up to 1 ${\rm GeV}^2$
- Results have some systematic discrepancies with previous experiments - normalization errors
- Includes two photon effects, proton radiative effects not large

- $\langle r_E^2 \rangle^{1/2} = 0.879 \pm 0.008 \text{ fm}$, consistent
- $\langle r_M^2 \rangle^{1/2} = 0.777 \pm 0.016$ fm, smaller by about 0.1 fm!
- $\langle r_M^2
 angle^{1/2} = 0.85 \pm 0.03 ~{
 m fm}$ from other global fit (Zhan et al.)

Latest low $Q^2 G_E^p$ results

X. Zhan et al. Phys. Lett. B 705, 59 (2011) Pol. Trans.

- Discrepancy with other data, but G^p_E slope values are in agreement with Bernauer
- Bernauer magnetic radius from new unseen "wiggle"
- $\bullet\,$ JLab data from $0.01-0.08~{\rm GeV}^2$ with polarized target under analysis.

Latest low $Q^2 G_E^p$ results

X. Zhan et al. Phys. Lett. B 705, 59 (2011) Pol. Trans.

- Discrepancy with other data, but G^p_E slope values are in agreement with Bernauer
- Bernauer magnetic radius from new unseen "wiggle"
- $\bullet\,$ JLab data from $0.01-0.08~{\rm GeV}^2$ with polarized target under analysis.

New Charge Radius Measurements

Straw . Chambers Target Chamber Target SciFi Veto GEMs SvN (300 K.Hven 15.6an)

MUSE at PSI

- Gilman et al.
- Elastic μ^- and μ^+

•
$$Q^2 = 0.002 - 0.07 \text{ GeV}^2$$

PRad

- Gasparian et al.
- Very low $Q^2 e^-$
- $Q^2 = 2 \times 10^{-4} 0.14 \text{ GeV}^2$
- No magnetic elements high precision calorimeter

Precision Radius Measurements - Under Analysis

- Data taken at Mainz will use initial state radiation reaches to effectively low Q^2
- Will extend to $Q^2 \sim 10^{-4} {
 m GeV}^2$
- Under analysis preliminary results in weeks?

Seamus Riordan — Cornell IEB 2015

Nucl. EM

Recent Lattice

Scalar

• $m_{\pi} = 149 \text{ MeV}, Q^2 \text{ to } 0.5 \text{ GeV}^2$

 Can't differentiate between two proton radii results (though quoted errors are about the difference)

Green et al. arXiv:1404.4029 [hep-lat]

Seamus Riordan — Cornell IEB 2015

Nucl. EM 15/30

Neutron Status

- Neutron form factor data is challenging: No free neutron targets and Gⁿ_E is small
- Data has been consistant at low Q^2
- Medium Q^2 polarization data has one high point which has been suggested to be looked at

 Neutron MS radius done from thermal neutron scattering on electrons

•
$$\langle r_n^2 \rangle = -0.1161 \text{ fm}$$

Nucleon Polarizabilities

- Polarizabilities with real photons also probe fundamental properties
- Six indepdentent scattering amplitudes
 - Lowest order probe \vec{E} and \vec{B} responses
 - Four higher order spin observables $(\vec{\gamma} \vec{p}, \gamma p)$ give spin polarizabilities
- Several basic sum rules to be comprehensively tested

Proton Scalar Polarizabilities

 \bullet Best data from 55-156 MeV w/ TAPS at MAMI

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}\Big|_{\text{Born}} - \omega\omega' \left(\frac{\omega'}{\omega}\right)^2 \frac{e^2}{m} \times \left[\frac{\alpha+\beta}{2} \left(1+\cos\theta\right)^2 + \frac{\alpha-\beta}{2} \left(1-\cos\theta\right)^2\right]$$

• Baldin-Lapidus sum rule:

$$\alpha + \beta = \frac{1}{2\pi} \int_{\omega_0}^{\infty} \frac{\sigma_{\rm tot}(\omega)}{\omega^2} d\omega$$

Global results:

(

$$\begin{array}{lll} \alpha & = & [12.1 \pm 0.3 (\mathrm{stat}) \pm 0.4 (\mathrm{sys}) \pm 0.3 (\mathrm{mod})] \times 10^{-4} \mathrm{fm}^{3} \\ \beta & = & [1.6 \pm 0.4 (\mathrm{stat}) \pm 0.4 (\mathrm{sys}) \pm 0.4 (\mathrm{mod})] \times 10^{-4} \mathrm{fm}^{3} \end{array}$$

Lieger

 $\bar{\beta}\,(10^{-4}\,fm^{3})$

Proton Spin Polarizabilities

$$H_{\text{eff}}^{(3)} = -4\pi \left[\frac{1}{2} \vec{\sigma} \cdot \left(\vec{E} \times \dot{\vec{E}} \right) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot \left(\vec{H} \times \dot{\vec{H}} \right) -\gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right]$$

- Four terms at $H^{(3)}$
- Requires several spin observables for complete determination
- γ_0 can come from DR

Forward and backward polarizabilities:

$$\gamma_0 = -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1E2} - \gamma_{M1M1} = -\frac{1}{4\pi} \int_{\omega_0}^{\infty} \frac{\sigma_{3/2} - \sigma_{1/2}}{\omega^3} d\omega$$

$$\gamma_\pi = -\gamma_{E1E1} - \gamma_{E1M2} + \gamma_{M1E2} + \gamma_{M1M1}$$

Proton Spin Polarizabilities

- Combination of LEGS and recent Mainz data with polarized beam/target determines polarizabilities
- Dominated by statistical uncertainties - much room for improvement with large statistics

	$O(\epsilon^3)$	$O(p^4)_a$	$O(p^4)_b$	K matrix	HDPV	DPV	L_{χ}	$HB\chi PT$	$B\chi \rm PT$	Experiment
γ_{E1E1}	-1.9	-5.4	1.3	-4.8	-4.3	-3.8	-3.7	-1.1 ± 1.8 (theory)	-3.3	-3.5 ± 1.2
γ _{M1M1}	0.4	1.4	3.3	3.5	2.9	2.9	2.5	$2.2 \pm 0.5(\text{stat}) \pm 0.7(\text{theory})$	3.0	3.16 ± 0.85
γ_{E1M2}	0.7	1.0	0.2	-1.8	-0.02	0.5	1.2	-0.4 ± 0.4 (theory)	0.2	-0.7 ± 1.2
γ_{M1E2}	1.9	1.0	1.8	1.1	2.2	1.6	1.2	1.9 ± 0.4 (theory)	1.1	1.99 ± 0.29
70	-1.1	1.9	-3.9	2.0	-0.8	-1.1	-1.2	-2.6	-1.0	$\pm 1.01 \pm 0.08 \pm 0.10$ [3,4]
γπ	3.5	6.8	6.1	11.2	9.4	7.8	6.1	5.6	7.2	8.0 ± 1.8 [5]

P.P. Martel et al, PRL 114, 112501 (2015)

Neutron Polarizabilities

- Neutron much less well determined especially outside of DR
- Analysis primarily done in γd reactions, potentially ³He

$$\begin{aligned} \alpha^n &= 12.5 \pm 1.8 (\text{stat})^{+1.1}_{-0.6} (\text{sys}) \pm 1.1 (\text{model}) \times 10^{-4} \text{fm}^3 \\ \beta^n &= 2.7 \pm 1.8 (\text{stat})^{+0.6}_{-1.1} (\text{sys}) \pm 1.1 (\text{model}) \times 10^{-4} \text{fm}^3 \end{aligned}$$

Levchuk MI, L'vov AI. Nucl. Phys. A 674:449 (2000) Kossert K, et al. Eur. Phys. J. A 16:259 (2003)

 Provides test of HBχPT with relations between p and n polarizabilities

$$\alpha^{p} = \alpha^{n}, \beta^{p} = \beta^{n} = \alpha/10 \qquad \qquad \gamma^{p}_{\pi} = -\gamma^{p}_{0} \left[\frac{12}{g_{A}} - 1 \right]$$
$$\gamma^{p}_{0} = \gamma^{n}_{0} = \frac{8}{10} \frac{1}{\pi m_{\pi}} \alpha \qquad \qquad \gamma^{n}_{\pi} = -\gamma^{p}_{0} \left[\frac{12}{g_{A}} + 1 \right]$$

GDH Sum Rule

٠

 GDH sum rule one of the best known and tested dispersion relations in NP

$$\int_{\omega_0}^{\infty} \frac{\sigma_{3/2} - \sigma_{1/2}}{\omega} d\omega = \frac{2\pi^2 \alpha}{m^2} \kappa^2$$

- Proton tested to ${\sim}8\%$ level
- Neutron remains a challenge with very little data! Low energy and nuclear binding effects are an issue
- Polarized ³He efforts at facilities like HIγS offer opportunities for data and testing 3 body calculations

Laskaris et al, arXiv:1506.00332

VCS below $\pi\pi$ Threshold

- Virtual Compton scattering has 6 independent generalized polarizabilities
- Scattering below threshold can also test χ PT and DR formalisms past threshold
- Tests low energy non-perturbative dynamics of nucleon system
- Similar work to be done for polarizabilities with full beam/target polarization states

Pion Production

- Limited to Δ resonance below 500 MeV
- πN coupling critical for chiral effective theories, isospin symmetry, etc.
- Couplings are some of the best studied properties, but still room for improvement (e.g. γn)
- New opportunities with high current (e.g. virtual photon tagging)

Charged Pion Production Near Threshold

- π[±] at threshold sensitive to G_A using chiral theories
- Assume dipole form with *g*_A constrained
- Complementary to $\nu n \rightarrow \mu p$ scattering
- Both methods generally in agreement with latest χ corrections

Experiment	QE	Q^2 range	M_A	ΔM_A	$M_A^{updated}$
$\nu_{\mu} d \rightarrow \mu^{-} p p_{s}$	events	GeV/c^2	(published)	FF	GeV/c^2
$Mann_{73}$	166	.05 - 1.6	$0.95 \pm .12$		
$Barish_{77}$	500	.05 - 1.6	$0.95 \pm .09$	026	
Miller _{82,77,73}	1737	.05 - 2.5	$1.00 \pm .05$	030	$0.970 \pm .05$
Baker ₈₁	1138	.06 - 3.0	$1.07 \pm .06$	028	$1.042 \pm .06$
$Kitagaki_{83}$	362	.11 - 3.0	$1.05^{+.12}_{16}$	025	$1.025^{+.12}_{16}$
$Kitagaki_{90}$	2544	.10 - 3.0	$1.070^{+.040}_{045}$	036	$1.034^{+.040}_{045}$
$Allasia_{90}$	552	.1-3.75	$1.080 \pm .08$	080	$1.00 \pm .08$
Av. $\nu_{\mu}d$	5780	above			$1.014 \pm .026$
π electrprod.					$1.014\pm.016$
$\overline{\nu}_{\mu}H \rightarrow \mu^{-} n$	13	0-1.0	0.9 ± 0.35	070	$0.83 \pm .35$
$\overline{\nu}_{\mu}H \rightarrow \mu^{-} n$	13	0-1.0	σ_{QE}		$1.04 \pm .40$
Average - all					$1.014\pm.014$

Seamus Riordan — Cornell IEB 2015

$$G_A = \frac{g_A}{1 + Q^2/M_A^2}$$

Neutral Pion Production at Threshold

- $\pi^{\rm 0}$ production at threshold offers strong tests for $\chi {\rm PT}$
- ullet Coupling vanishes in the chiral limit and $p_\pi \to 0$
- Recent results with unpolarized and spin observables from JLab and MAMI and have agreement with low Q^2 theories, but differences at high Q^2

Nuclear Properties through EM Probes

- Nuclear structure and low lying excited states have been done for decades
- Gives some of the best data we have in enumerating these states
- Possibility for studying some reaction channels (backwards) that have a photon in the final state

Nuclear Properties - Dipole Polarizabilities

• Dipole polarizability offers constraints on symmetry energy density dependence

$$\alpha_D = \frac{\hbar c}{2\pi^2} \int \frac{\sigma_{\rm abs}}{\omega^2} d\omega = \frac{8\pi}{9} \int \frac{B(E1)}{\omega} d\omega$$

- Ties into programs of neutron star studies, PREX/CREX
- Tamii EPJ A (2014) 50:28 ²⁰⁸Pb
- Hashimoto arXiv:1503.08321 ¹²⁰Sn

Nuclear Properties - Dipole Polarizabilities

• Dipole polarizability offers constraints on symmetry energy density dependence

$$lpha_D = rac{\hbar c}{2\pi^2} \int rac{\sigma_{
m abs}}{\omega^2} d\omega = rac{8\pi}{9} \int rac{B(E1)}{\omega} d\omega$$

- Ties into programs of neutron star studies, PREX/CREX
- Tamii EPJ A (2014) 50:28 ²⁰⁸Pb
- Hashimoto arXiv:1503.08321 ¹²⁰Sn

Nuclear Properties - Nuclear Resonance Fluorescense

- NRF gives access to $\gamma A \rightarrow \gamma A$ processes
- Monochromatic beams from Compton backscattering can test very low lying
 < 10 MeV states to very high resolution
- Used at HIγS to identify state *E* and J^π in ¹³⁸Ba, ⁸⁸Sr, ⁹²Sr and ⁹⁴Mo and others, EM branching ratios, etc.

- Electromagnetic nuclear physics is an incredibly powerful and far-reaching tool for studying the strong nuclear force
- The Proton Radius Puzzle is one of the biggest problems in particle physics and is imperative to explore
- Many fundamental properties of the nucleon still remain to be measured to great precision, especially where polarization observables are necessary and for the proton
- New low energy, non-perturbative physics still remains an important area for exploration

BACKUP

Revisiting Kelly

Latest data fit with complete basis set:

• Focusing more on high Q^2 data uncertainty

Low Q^2 Dirac/Pauli

$F_{1,2}^{p} = \frac{2}{3}F_{1,2}^{u} - \frac{1}{3}F_{1,2}^{d}$ $F_{1,2}^{n} = -\frac{1}{3}F_{1,2}^{u} + \frac{2}{3}F_{1,2}^{d}$

- F_1 predictions have pretty good consistency with data F_2 is wildly off
 - Hard to accurately predict nucleon magnetic moments from first principles
 - F₂ contains quark "structure" - is zero (up to radiative corrections) for pointlike

Super Bigbite Program - Hall A

Motivation

- Super Bigbite builds on large acceptance/moderate resolution experience
- Measures *ratios* to control systematics
- G_E^p/G_M^p , G_M^n/G_M^p , G_E^n/G_M^n

Segmented Hadron Calorimeter

FFs with 12 GeV CEBAF

High Q^2 measurements of all four nucleon form factors planned

- $\bullet\ Recoil\ polarimetry\ through\ two\ CH_2\ analyzers$
- e^- detected in ECal with coordinate detector
- Q^2 up to 12 GeV²

- 75 μA on 40 cm target
- $heta_h$ down to 17°
- Background rates up to 150 kHz/cm²
- ECal radiation damage serious issue

High $Q^2 G_E^n$ Experimental Layout

- Upgraded Bigbite detector stack for higher rates, better PID
- $\bullet\,$ Hadron calorimeter at 17 ${\rm m}$, need 0.5 ${\rm ns}\,$ ToF
- 48D48 deflects protons
- New addition of Cherenkov and GEMs for π^- rejection and high rate tracking

Seamus Riordan — Cornell IEB 2015 Nucl. EM 29/30

Polarized ³He Target

- Upgraded ³He cell allows for $I = 8 \rightarrow 60 \ \mu A$, $I = 40 \rightarrow 55 \ cm$
- Convection and metal cell ends allow for higher sustained \vec{P} (~ 60%)

G_M^n Setup

- \bullet 7 Q^2 points ranging from 3.5 ${\rm GeV}^2$ to 13.5 ${\rm GeV}^2$
- Setup similar to G_E^n with LD_2 target

DSE/Fadeev q(qq) Calculations

- Model based on QCD's Dyson-Schwinger equations to describe dressed quark propagator
- Fadeev amplitudes describe three-quark states
- Few free parameters tuned to reproduce nucleon properties such as masses

Cloët et. al. arXiv:nucl-th/0804.3118

Constituent Quark Light-Front Cloudy Bag Model

- G_E^p suppression at higher Q^2 due to inclusion of quark orbital angular momentum
- Know only 1/3 of the spin of the proton is carried by the quark *spins*, reproduced with di-quark DOF

Seamus Riordan — Cornell IEB 2015 Nucl. EM 30/30