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Motivation |

From the 2014 Review of Particle PhySICS

It is up to

the workers /n fhls f/eld to solve this puzzle.
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Attack vectors
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Attack vectors

o Did I mess it up? l.e. : : :
verify scattering result! Lol ]
o Anything funky going on :
below minimum &2?

o What about heavier
atoms? Deuterium, = B (AT 200
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Revamped “Classic” approach

o Modern version of Rosenbluth

o This is what we did in Mainz

o Measure angle scans at constant energy

o Fit different FF models directly to all cross section data




Hypothetical experiment

0 Baoseline:

o Measure every 5° from 15 — 165°
o At energies 100, 200, 300, 400, 500 MeV

o Assumed errors:

o 0% systematic error
o 0.2% statistical
o 1% normalization
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Projected performance |

o Input: Spline fit from Mainz

o Analyzed with 5th order polynomialxdipole

0 Baseline: §re = 0.004fm , 6y, = 0.006 fm

o Angles 15° — 120°: 6rg = 0.005fm , 6ry, = 0.026 fm
o Angles 40° — 165°: 6rg = 0.007 fm , 6y, = 0.007 fm
o “Cornell”: ére = 0.008fm , éryy = 0.019fm




Projected perfomance |
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Thoughts

o 100-300 MeV would cover interesting region in Gy,
but needs more energies in between

o 50 MeV gives 10 times smaller &2 than Mainz

o More energies / more angles to test for systematics

o 20 msr detector, 500 MeV, 165° @ 100mA and
10"%ecm—2 target: 50 min.
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Same approach = Same systematical errors as
beforel!

How good do we really know the radiative
corrections?

o especially at back angles!

How well do you know the acceptance? Better
point-like target

How well do you know the efficiency? Online
monitoring!




Mainz ISR

The following slides have been provided by

Miha Mihovilovic




ISR Experiment at MAMI
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[ Initial state radiation

- Radiative tail dominated by coherent

sum of two Bethe-Heitler diagrams.

Q 2
r) Re construct

Ge

2

124

Simulation

104 102 102
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- In data ISR can not be distinguished from FSR.

- Combining data with the simulation, ISR information can be reached.

- Idea behind new MAMI experiment to extract G.P at Q2 ~ 10+ (GeV/c)?

- Redundancy measurements at higher Q? for testing this approach in a

region, where FFs are well known.

10"

Events / 1mC



[ Simul++ ]

- In the experiment the G_° will not be Searching for G.” which

. gives the best agreement
directly extracted from data. between data and simulation

Data vs. Simulation

- FF are camouflaged by effects that 85000 Simuliion
accompany FSR and ISR diagrams ol e
(Born diagrams, vertex corrections).

25000
- Approach analogous to Bernauer et al.
will be used, where simulated
distributions are directly compared
to measured data.

20000

15000 +

Counts/ 0.1 mC

10000 +

- Simulate ep->epy with a sophisticated 5000 | ¢
Monte-Carlo simulation Simul++. 0000
05" 0 5 10 15
- Simulation will be run with various values Relative particle momentum , / %

of GgP. Contribution of GyP is neglected @ Q2~0.

- Final values of FFs will be determined by a x?-minimization.



[ Going beyond simple approximation

- Simul++ employs an advanced - Next order terms considered via
event generator, which exactly effective correction to the
calculates amplitudes for four cross-section.

leading order diagrams. \%/ \ji/ \j}/

\Hé(

I P '\\

- Precise spectrometer acceptances, Y
particle energy-losses and /‘Q\\

rescatterings are also implemented.



[ The Experiment

- Full experiment done in August 2013. Four weeks of data taking.

] Spectrometer A:

- Luminosity monitor (const. setting)

- Momentum: 180, 305, 386 MeV/c
- Angles: 50°, 60°

Electron Beam:

- Energy: 195, 330, 495 MeV ~ <*

- Current: 10nA — 1uA 74
- Rastered beam

Q Orster probe

Spectrometer B:
~___ - Datataking

" . : - Angle: 15.3°

Luminosity monitors: - Momentum:

- pA-meter 48 - 194 MeV/c (35 setups)

- Forster probe S|gectr0meter C: 156 - 326 MeV/c (1 2 SetUpS)
289 - 486 MeV/c (9 setups)

- - Not used

Beam control module:

- Communicates with MAMI and ensures very stable beam.
- BPM and pA-meter measurements performed automatically every 3min.



[

LH, target and its challenges

- Experiment utilizes a standard Liquid-Hydrogen target.

LH2 Loop

Scattering chamber

L :J Target Cell made
i | of 10um Havar

‘ 49.5 mm

- Due to limited vacuum and low beam intensities,

layer of Cryogens covered the target cell.
- Depositions consists mostly of residual N, O,.

- Affects not only particle energy-losses but
changes also the detection rates.

- Disturbs Luminosity determination.
- Amount of snow changes with time.




[

Minimizing cryogenic depositions

- Solid vacuum in target chamber (10 mbar).

- New target windows with additional layer of Aramid.

- Fixing Spectrometer A to elastic settings to see effects of

snow gathering more clearly.

ex [mm]

Old data

100

Run Number

difference [%]

Relative

Spectrometer A has enough
resolving power for clear
identification of Nitrogen and
Oxygen.
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[ Kinematic settings of the full experiment ]

- Measured kinematic points and corresponding Q? at vertex.
- Three kinematic regions overlap to verify ISR approach.
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[ The offline analysis

- Goal: determine the cross-sections with accuracy of ~ 1%.
- The analysis ongoing, so far:
Spectrometer calibrations:

- New optics calibration, absolute momentum optimization.
- Calibration of detector setup and evaluation of efficiencies.

Luminosity:
- New and improved luminosity calculator.

Background studies:
- Optimization of event selection cuts.
- Determination of thickness of the cryogenic depositions.

- Explicit (effective) inclusion of virtual and real 2y corrections.
- Complete simulation of effects related to target walls and cryogenic depositions.

Data analysis:
- First analysis of the dataset at 495MeV to prove the ISR principle.




[ Preliminary Results ]

. . 10"
- First results for 495 MeV setting. <
B
8
- Data are normalized to 0.1mC =
using Férster probe & Spec-A. Sqg2
®
% ,
- Only basic kinematic cuts 2
. 108 ] :_gﬁlﬂta (N’AMI 2013)
considered. = Hfe.ehn; and
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. . - 10°
- Pion production processes S
(2}
contribute ~10% at smallest E
O 10°
momenta.
. . 10
- Contributions from target wall not
.. ~ 54
negligible. |
S|g
- Agreement between data and ? 51
simulation justifies use of Simul++.  -10
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[ The upcoming challenges

- A~ 2% agreement between data and simulation 200 MeV away from the
elastic peak motivates further analysis:

Background studies:

- Identification and consideration of other sources of background
(e.g. snout of spectrometer B).

- Full study of the Empty cell and Solid-state target data.

- Exact calculations of 2y corrections required.
- Improvements to the simulation of background.

Data analysis:
- Analysis of the 330MeV and 195MeV settings.

- Extraction of the proton charge form-factor at Q2 = 3 X 104 GeV2.



o Need multiple beam energies for separation /
verification

o Spectrometers! (atf least two: measurement +
normalization)

o ISR can access smallest @2; Separation can access
magnetic radius / form factor

o Think about your systematics! More variation is better
than minimal uncertainty per point.

o Change target, rinse, repeat!




