Elastic Lepton-Proton Scattering and Higher-Order QED Effects

Andrei Afanasev

The George Washington University, Washington, DC, USA

Plan of talk

Radiative corrections for charged lepton scattering

. Model-independent and model-dependent; soft and hard photons

Two-photon exchange effects

- . Soft-photon exchange approximation and IR regularization
- . Novel effects in muon scattering
- . Single-spin asymmetries from two-photon exchange

Summary

Basic Approaches to QED Corrections

- L.W. Mo, Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969); Y.S. Tsai, Preprint SLAC-PUB-848 (1971).
 - . Considered both elastic and inelastic inclusive cases. No polarization.
- D.Yu. Bardin, N.M. Shumeiko, Nucl. Phys. B127, 242 (1977).
 - Covariant approach to the IR problem. Later extended to inclusive, semiexclusive and exclusive reactions with polarization.
- E.A. Kuraev, V.S. Fadin, Yad.Fiz. 41, 7333 (1985); E.A. Kuraev, N.P.Merenkov, V.S. Fadin, Yad. Fiz. 47, 1593 (1988).
 - Developed a method of <u>electron structure functions</u> based on Drell-Yan representation; currently widely used at e⁺e⁻ colliders
 - Applied for polarized electron-proton scattering by AA et al, JETP 98, 403 (2004).

Complete radiative correction in $O(\alpha_{em})$

Radiative Corrections:

- Electron vertex correction (a)
- Vacuum polarization (b)
- Electron bremsstrahlung (c,d)
- Two-photon exchange (e,f)
- Proton vertex and VCS (g,h)
- Corrections (e-h) depend on the nucleon structure

•Meister&Yennie; Mo&Tsai

•Further work by Bardin&Shumeiko;

Maximon&Tjon; AA, Akushevich, Merenkov;

•Guichon&Vanderhaeghen' 03: Can (e-f) account for the Rosenbluth vs. polarization experimental discrepancy? Look for ~3% ...

Main issue: Corrections dependent on nucleon structure

Model calculations:

- •Blunden, Melnitchouk, Tjon, Phys.Rev.Lett.91:142304,2003
- •Chen, AA, Brodsky, Carlson, Vanderhaeghen, Phys.Rev.Lett.93:122301,2004

Bremsstrahlung for Relativistic vs Nonrelativistic Lepton Scattering

- Accelerated charge always radiates, but the magnitude of the effect depends on kinematics
- . See Bjorken&Drell (Vol.1, Ch.8):
 - . For large $Q^2 >> m_e^2$ the rad.correction is enhanced by a large logarithm, $\log(Q^2/m_e^2) \sim 15$ for GeV² momentum transfers
 - . For small $Q^2 \ll m_e^2$, rad.correction suppressed by Q^2/m_e^2
 - . For intermediate $Q^2 \sim m_e^2$, neither enhancement nor suppression, rad correction of the order $2\alpha/\pi$
- Implications for COMPASS @CERN: rad. corrections reduce for $log(Q^2/m_{\mu}^2) \sim 3$ by about a factor of 5 compared to electrons (*good news!*) and become comparable in magnitude to two-photon effects (*bad news!*)

Separating soft 2-photon exchange

- Tsai; Maximon & Tjon ($k \rightarrow 0$); similar to Coulomb corrections at low Q²
- . Grammer & Yennie prescription PRD 8, 4332 (1973) (also applied in QCD calculations)
- . Shown is the resulting (soft) QED correction to cross section
- . <u>Already included in experimental data analysis for elastic ep</u>
 - Also done for pion electroproduction in AA, Aleksejevs, Barkanova, Phys.Rev. D88 (2013) 5, 053008 (inclusion of lepton masses is straightforward)

Lepton mass is not essential for TPE calculation in ultra-relativistic case; Two-photon effect below 1% for lower energies and $Q^2 < 0.1 GeV^2$

Calculations using Generalized Parton Distributions

Model schematics:

• Hard eq-interaction

•GPDs describe quark emission/ absorption

•Soft/hard separation

•Use Grammer-Yennie prescription

Hard interaction with a quark

AA, Brodsky, Carlson, Chen, Vanderhaeghen, Phys.Rev.Lett.**93**:122301,2004; Phys.Rev.D**72**:013008,2005

Updated Ge/Gm plot

AA, Brodsky, Carlson, Chen, Vanderhaeghen, Phys.Rev.Lett.93:122301, 2004; Phys.Rev.D72:013008, 2005 Review: Carlson, Vanderhaeghen, Ann.Rev.Nucl.Part.Sci. 57 (2007) 171-204

- Significant part of the discrepancy is removed by the TPE mechanism
- Verification coming from
 - VEPP: PRL 114 (2015) 6, 062005
 - CLAS 114 (2015) 6, 062003
 - OLYMPUS (coming 2015)

Hard Bremsstrahlung

. Need to include radiative lepton tensor in a complete form: AA et al, **Phys.Rev. D64 (2001) 113009; PLB 514, 269 (2001)**: terms ~ k emitted photon momentum) usually neglected in rad.correction calculations, but can lead to ~1% effect for Rosenbluth slope at high Q^2

$$L^{r}_{\mu\nu} = -\frac{1}{2}Tr(\hat{k}_{2} + m)\Gamma_{\mu\alpha}(1 + \gamma_{5}\hat{\xi}_{e})(\hat{k}_{1} + m)\overline{\Gamma}_{\alpha\nu}$$

$$\Gamma_{\mu\alpha} = \left(\frac{k_{1\alpha}}{k \cdot k_{1}} - \frac{k_{2\alpha}}{k \cdot k_{2}}\right)\gamma_{\mu} - \frac{\gamma_{\mu}\hat{k}\gamma_{\alpha}}{2k \cdot k_{1}} - \frac{\gamma_{\alpha}\hat{k}\gamma_{\mu}}{2k \cdot k_{2}}\right)$$

$$\Gamma_{\alpha\nu} = \left(\frac{k_{1\alpha}}{k \cdot k_{1}} - \frac{k_{2\alpha}}{k \cdot k_{2}}\right)\gamma_{\nu} - \frac{\gamma_{\nu}\hat{k}\gamma_{\alpha}}{2k \cdot k_{1}} - \frac{\gamma_{\nu}\hat{k}\gamma_{\alpha}}{2k \cdot k_{2}}\right)$$
additional terms, about 1% effect
THE GEORGE
WASHINGTON
UNIVERSITY
Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

Coulomb and Two-Photon Corrections

- . Coulomb correction calculations are well justified at lower energies and Q2
- Hard two-photon exchange (TPE) contributions cannot be calculated with the same level of precision as the other contributions.
- . Two-photon exchange is independent on the lepton mass in an ultrarelativistic case.
- . <u>Issue:</u> For energies ~ mass TPE amplitude is described by 6 independent generalized form factors; but experimental data on TPE are for ultrarelativistic electrons, hence independent info on 3 other form factors will be missing.
- Theoretical models show the trend that TPE has a smaller effect at lower Q^2 . The reason is that "hard" TPE amplitudes do not have a $1/Q^2$ Coulomb singularity, as opposed to the Born amplitude.

Lepton Mass Effects

- Standard approximations keep the lepton mass in the logarithms but neglect it in power terms. May be justified in the ultrarelativistic case and $Q^2 >> (lepton mass)^2$
- . Most of analysis codes use exact mass dependence for hard brem, but use above approximations for the "soft" part of brem correction
- Revised approach is required that will NOT result in new theoretical uncertainties
- . New rad.correction codes no longer use peaking approximation (justified for relatively small lepton masses)
- Formalism and Monte-Carlo generators can be adapted for this analysis (ELRADGEN; MASCARAD, etc;

more on www.jlab.org/RC); HAPRAD for SIDIS of muons

ELRADGEN Results for 100MeV-beams

MUSE: Proposed experiment at PSI to measure proton charge radius in elastic scattering of muons, arXiv:1303.2160

Ilyichev (Minsk) and AA: updated ELRADGEN Monte Carlo (Afanasev et al., Czech. J. Phys. 53 (2003) B449; Akushevich et al., Comput. Phys. Commun. 183 (2012) 1448) to include (a) mass effects and (b) two-photon effects (c) hard brem included

Left: Radiative correction for elastic electron-proton scattering as a function of lab scattering angle in MUSE kinematics. Dashed lines show the effect of a kinematic cut. Right: Same result but for the scattering of muons.

C-odd Effects in ELRADGEN

- Order- α corrections due to (a) two-photon exchange and (b) lepton-hadron brem interference for opposite-sign leptons are also opposite in sign
 - ELRADGEN included TPE (soft photons only) and brem interference), predicted charge asymmetry in JLAB CLAS kinematics (electrons)

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

Helicity amplitudes for μp elastic scattering

- Total of 6 amplitudes:
 - . 3 helicity-conserving, 3 helicity flip
 - . Helicity-flip amplitudes neglected in ultra-relativistic $E\mu >> m\mu$
 - Exception: single-spin beam asymmetries caused by interference of helicity-conserving and helicity-flip
- For muon scattering at ~100 MeV ultra-relativistic approximation no longer applies
- Model-independent analysis of two-photon exchange requires to fit amplitudes

Elastic contribution to TPE

TPE for elastic mu-p scattering calculated by Tomalak&Vanderhaeghen, PRD 90 (2014) 013006; included only elastic intermediate state described by form factors

FIG. 4: TPE correction to the unpolarized elastic $\mu^- p$ cross section for three different muon beam momenta. The total correction is shown by the black solid curves, the contribution from the F1F1 structure of photon-proton-proton vertices is shown by the red dashed curves, the contribution from the F1F2 structure by the green dashed-dotted curves, and the contribution from the F2F2 structure by the blue dotted curves.

WASHINGTON UNIVERSITY WASHINGTON, DC

THE GEORGE

Helicity-Flip in TPE; estimate of inelastic contribution

- . New dynamics from scalars (σ , f-mesons). No pseudo-scalar contribution for unpolarized particles
- . Scalar t-channel exchange contributes to TPE (no longer setting m_{lepton}

. No information on $F_{\sigma\mu\mu}$ is available. Need model estimates. From sigma-pole contribution to nucleon polarizability, we estimate for Q²=0.01 GeV² $\delta_{\sigma}^{2\gamma}$ is about 10⁻⁴, lepton helicity-flip is important, scales as $\sqrt{\tau}$, $\tau = Q^2 / 4M_N^2$ Can be studied directly in the ratio of μ + and μ - cross sections UNIVERSITY Andrei Afanasey. Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

Conclusions

MUSE:

. The effort on the radiative corrections aims at proper accounting of the radiative effects, that appear to show significant difference between electron and muon scattering

- Radiative corrections shown to be <1% for muons; included in MUSE analysis
- . Two-photon effects can be studied directly in the ratio of μ + and μ cross sections

Single-Spin Asymmetries in Elastic Scattering

Parity-conserving

. Observed spin-momentum correlation of the type:

$$\vec{s} \cdot \vec{k}_1 \times \vec{k}_2$$

where $k_{1,2}$ are initial and final electron momenta, *s* is a polarization vector of a target OR beam

• For elastic scattering asymmetries are due to *absorptive part* of 2-photon exchange amplitude

Parity-Violating

$$\vec{s} \cdot \vec{k_1}$$

Normal Beam Asymmetry in Moller Scattering

Pure QED process, $e^++e^- \rightarrow e^-+e^-$

- . Barut, Fronsdal , Phys.Rev.120:1871 (1960): Calculated the asymmetry in first non-vanishing order in QED $O(\alpha)$
- Dixon, Schreiber, Phys.Rev.D69:113001,2004, Erratumibid.D71:059903,2005: Calculated O(α) correction to the asymmetry

Single-Spin Target Asymmetry

$$\vec{s}_T \cdot \vec{k}_1 \times \vec{k}_2$$

De Rujula, Kaplan, De Rafael, Nucl.Phys. B53, 545 (1973): Transverse polarization effect is due to the absorptive part of the non-forward Compton amplitude for off-shell photons scattering from nucleons See also AA, Akushevich, Merenkov, hep-ph/0208260

Figure 2. Integration region over Q_1^2 and Q_2^2 in Eq.(2) for elastic $(W^2 = M^2)$ and inelastic contributions. The latter (left) is given for $Q^2=4$ GeV² and two values of W^2 , which is an integration variable in this case. The elastic case is shown on the right as a function of external Q^2 . The electron beam energy is $E_b = 5$ GeV.

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

Quark+Nucleon Contributions to Target Asymmetry

- Single-spin asymmetry or polarization normal to the scattering plane •
- Handbag mechanism prediction for single-spin asymmetry of elastic eN-scattering on a polarized nucleon target (AA, Brodsky, Carlson, Chen, Vanderhaeghen)

$$A_n = \sqrt{\frac{2\varepsilon(1+\varepsilon)}{\tau}} \frac{1}{\sigma_R} \left[G_E \operatorname{Im}(A) - \sqrt{\frac{1+\varepsilon}{2\varepsilon}} G_M \operatorname{Im}(B) \right]$$

Only minor role of quark mass

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

Single-spin Asymmetries at JLAB

- Polarized target (He3) JLAB E-05-015 (arXiv:1502.02636)
- . Recoil polarimetry (proton)

Single-Spin Asymmetry in Elastic Scattering Early Calculations

Spin-orbit interaction of electron moving in a Coulomb field

Need in spin-flip and spin-nonflip+phase difference

- N.F. Mott, Proc. Roy. Soc. London, Set. A **135**, 429 (1932);
- Interference of one-photon and twophoton exchange Feynman diagrams in electron-muon scattering: Barut, Fronsdal, Phys.Rev.120, 1871 (1960)
- *Extended to quark-quark scattering SSA in pQCD*: Kane, Pumplin, Repko, Phys.Rev.Lett. 41, 1689 (1978)

$$A_n \propto \frac{\alpha \cdot m_e \cdot \theta^3}{E}$$
, for $\theta \ll 1$
(small – angle scattering)

 $\Delta(\vartheta) = \pm 2Z\alpha \frac{v\sqrt{1-v^2}}{1-v^2\sin^2(\vartheta/2)} \frac{\sin^3(\vartheta/2)}{\cos(\vartheta/2)} \ln \frac{1}{\sin(\vartheta/2)}.$

Proton Mott Asymmetry at Higher Energies

- Asymmetry due to absorptive part of two-photon exchange amplitude; shown is elastic intermediate state contribution
- Nonzero effect first observed by SAMPLE Collaboration (S.Wells et al., PRC63:064001,2001) for 200 MeV electrons

THE.GEORGE alculated by Diaconescu&Ramsey-Musolf (2004); used low-momentum WASHING TOTS ion, questionable in SAMPLE kinematics

•

•

Phase Space Contributing to the absorptive part of 2γ -exchange amplitude

- 2-dimensional integration (Q_1^2, Q_2^2) for the elastic intermediate state
- 3-dimensional integration (Q_1^2, Q_2^2, W^2) for inelastic excitations

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

UNIVERSITY

MAMI data on Mott Asymmetry

However, it doesn't make it into TPE for Rosenbluth

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

Special property of Mott asymmetry

•Mott asymmetry above the nucleon resonance region

(a) does not decrease with beam energy

(b) is enhanced by large logs

(AA, Merenkov, PL B599 (2004)48; hep-ph/0407167v2 (erratum))
•Reason for the unexpected behavior: exchange of hard collinear quasireal photons and diffractive mechanism of nucleon Compton scattering

•For s>>-t and above the resonance region, the asymmetry is given by:

$$A_{n}^{e}(diffractive) = \sigma_{\gamma p} \frac{(-m_{e})\sqrt{Q^{2}}}{8\pi^{2}} \cdot \frac{F_{1} - \tau F_{2}}{F_{1}^{2} + \tau F_{2}^{2}} (\log(\frac{Q^{2}}{m_{e}^{2}}) - 2) \cdot Exp(-bQ^{2})$$

Compare with asymmetry caused by Coulomb distortion at small $\theta =>$ may differ by orders of magnitude depending on scattering kinematics

$$A_n^e(Coulomb) \propto \alpha \frac{m_e}{\sqrt{s}} \theta^3 \rightarrow A_n^e(Diffractive) \propto \alpha m_e(\sqrt{s}) \theta \cdot R_{int}^2$$

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Input parameters

For small-angle (-t/s<<1) scattering of electrons with energies Ee, normal beam asymmetry is given by the energy-weighted integral

$$A_n \propto \frac{1}{E_e^2} \int_{v_{th}}^{E_e} dv \cdot v \sigma_{\gamma p}^{tot}(v; q_{1,2}^2 \approx 0)$$

<u>The integral is energy-weighed,</u> <u>higher energies enhanced</u>

 $\sigma_{\gamma p}$ from N. Bianchi at al., Phys.Rev.C54 (1996)1688 (resonance region) and Block&Halzen,

Phys.Rev. D70 (2004) 091901

-A_n serves as an ideal tool to sum over a variety of intermediate states

Predictions vs experiment for Mott asymmetry

Use fit to experimental data on $\sigma_{\gamma p}$ (dotted lines include only one-pion +nucleon intermediate states)

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

Predict no suppression for Mott asymmetry with energy at fixed Q^2

Comparison with E158 data

. SLAC E158:

An=-2.89±0.36(stat)±0.17(syst) ppm

(K. Kumar, private communication)

• Theory (AA, Merenkov): An=-3.2ppm

• Good agreement justifies application of this approach to the real part of two-boson exchange (γZ box)

Mott Asymmetry on Nuclei

Important systematic correction for parity-violation experiments (~-10ppm for HAPPEX on ⁴He, ~-5ppm for PREX on Pb,), *see AA arXiv:0711.3065 [hep-ph]* ; also Gorchtein, Horowitz, Phys.Rev.C77:044606,2008

Coulomb distortion: only10⁻¹⁰ effect (Cooper&Horowitz, Phys.Rev.C72:034602,2005)

Five orders of magnitude enhancement in HAPPEX kinematics due to excitation of inelastic intermediate states in 2γ-exchange (AA, Merenkov; use Compton data from Erevan) THE GEORGE WASHINGTON UNIVERSITY

Transverse Beam Asymmetries on Nuclei (HAPPEX+PREX)

Abrahamyan et al, Phys.Rev.Lett. 109 (2012) 192501

- . Good agreement with theory for nucleon and light nuclei
- Puzzling disagreement for ²⁰⁸Pb measurement; if confirmed, need to include additional electron interaction with highly excited intermediate nuclear state, magnetic terms, etc (= effects of higher order in α_{em}). Interesting nuclear effect! Experimentally, need additional measurements for intermediate-mass targets (e.g., Al, Ca, Fe)

Target	Н	$^{4}\mathrm{He}$	¹² C	²⁰⁸ Pb
$A_{\rm n}({\rm ppm})$	-6.80	-13.97	-6.49	0.28
$\sigma(A_{\rm n})({\rm ppm})$	± 1.54	± 1.45	± 0.38	± 0.25
$\sqrt{Q^2}$ (GeV)	0.31	0.28	0.099	0.094
A/Z	1.0	2.0	2.0	2.53
$\hat{A}_{n} (ppm/GeV)$	-21.9	-24.9	-32.8	+1.2
$\sigma(\hat{A}_{\rm n})({\rm ppm/GeV})$	± 5.0	± 2.6	± 1.9	± 1.1

Inclusive Electroproduction of Pions

$$\vec{s}_e \cdot \vec{k}_e imes \vec{k}_{\pi}$$

- . Reaction $p(e_{pol},\pi)X$
 - . Parity-conserving spin-momentum correlation
 - . Introduced in Donnelly, Raskin, Annals Phys. 169, 247 (1986)
 - . Can be shown to be a) due to R_{TL} , response function (=fifth structure function) and b) not to integrate to zero after integration over momenta of the scattered electron
 - This is NOT a two-photon exchange effect (but suppressed by an electron mass)
 - . Order-of magnitude estimate: An(ep-> πX)~ A_{LT'}(ep->e' πN)*m_e/E'/sin(θ_e)
 - Use MAMI data $A_{LT'}(ep->e'\pi N)\sim7\%$, from Bartsch et al Phys.Rev.Lett. 88:142001,2002 => An(ep->\pi X)~250ppm
 - Physics probe of (strong) final-state interactions in electroproduction reactions
 - . Why not simply measuring SF in A(e_{pol} , $e\pi$)X directly with
 - longitudinal polarization? Because transverse SSA gives access to very low Q², may not available to spectrometers Andrei Afanasey, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

Summary: SSA in Elastic ep- and eA-Scattering

- VCS amplitude in *beam asymmetry* is enhanced in different kinematic regions compared to *target asymmetry* or corrections to *Rosenbluth cross section*
- Physics probe of an absorptive part of a non-forward Compton amplitude
- . Important systematic effect for PREX, Q_{weak}
- Mott asymmetry in small-angle ep-scattering above the pion threshold is controlled by quasi-real photoproduction cross section with photon energy approximately matching beam energy – similarity with Weizsacker-Williams Approximation – collinear photon exchange
- Due to excitation of inelastic intermediate states A_n is

(a) not suppressed with beam energy and

(b) does not grow with Z (proportional to instead A/Z) (c) At small angles $\sim \theta$ (vs θ^3 for Coulomb distortion)

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

. Confirmed experimentally for a wide range of beam energies

Outlook

- . Beam and target SSA for elastic electron scattering probe imaginary part of virtual Compton amplitude.
 - . Beam SSA: target helicity flip²+nonflip²
 - . Target SSA: Im[target helicity flip*nonflip]
 - . Ideal " 4π detector" to probe electroproduction amplitudes for a variety of final states (π , 2π , etc)
- Beam SSA for nuclear targets in good agreement with theory except for a high-Z target 208Pb. Interesting nuclear physics effects beyond two-photon exchange
- . Beam SSA in Reaction $A(e_{pol},\pi)X$ probes strong final-state interactions due to "fifth stucture function"

in A(e,e' π)X

Physics Opportunities with High Intensity Beams

- . High intensities allow measurements with high statistical accuracy
- QED corrections limit interpretation of electron scattering measurements in terms of one-photon exchange quantities (eg, form factors)
- . Systematics from high-order QED can be studied by

(a) comparing electron and positron measurements (C-odd asymmetries) and

(b) studies of single-spin asymmetries (that are otherwise zero in first Born approximation)

