# Overview of recent advances in calculations of two-photon exchange effects 

Peter Blunden<br>University of Manitoba

Intense Electron Beams Workshop

$$
\text { June } 18,2015
$$

## Outline

- Summary of key results (circa 2003-2008)

Review: Arrington, PGB, Melnitchouk, Prog. Nucl. Part. Phys., (2011)
-impact on form factor measurements
-what is connection to $2^{\text {nd }}$ Born approximation?
-what happens at very low $Q^{2}$ ?
-how do resonances and partonic description enter as $Q^{2}$ increases?

- Recent advances
-improved hadronic model parameters (fit to data)
-use of dispersion relations and connection to data
-new experimental results


## Proton $G_{E} / G_{M}$ Ratio



LT method

$$
\sigma_{R}=G_{M}^{2}\left(Q^{2}\right)+\frac{\varepsilon}{\tau} G_{E}^{2}\left(Q^{2}\right)
$$

$\rightarrow G_{E}$ from slope in $\varepsilon$ plot
$\rightarrow$ suppressed at large $Q^{2}$

PT method

$$
\frac{G_{E}}{G_{M}}=-\sqrt{\frac{\tau(1+\varepsilon)}{2 \varepsilon} \frac{P_{T}}{P_{L}}}
$$

$\rightarrow P_{T, L}$ recoil proton polarization in $\vec{e} p \rightarrow e \vec{p}$

## Two-photon exchange

$\square$ interference between Born and two-photon exchange amplitudes


- contribution to cross section:

$$
\delta^{(2 \gamma)}=\frac{2 \mathcal{R} e\left\{\mathcal{M}_{0}^{\dagger} \mathcal{M}_{\gamma \gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}
$$

- standard "soft photon approximation" (used in most data analyses)
$\longrightarrow$ approximate integrand in $\mathcal{M}_{\gamma \gamma}$ by values at $\gamma^{*}$ poles
$\longrightarrow$ neglect nucleon structure (no form factors)

Assuming OPE


## Rosenbluth

Pol. transfer
about 50\% TPE + ??
about 80\% TPE + ??


## Various Approaches (circa 2003-2008)

Low to moderate $Q^{2}$ : hadronic: $\mathrm{N}+\Delta+\mathrm{N}^{*}$ etc.

- as $Q^{2}$ increases more and more parameters, less and less reliable

(PGB et al., Phys. Rev. Lett 91, 142304 (2003))


## Moderate to high $Q^{2}$ :

- GPD approach: assumption of hard photon interaction with I active quark
- Embed in nucleon using Generalized Parton Distributions
- Valid only in certain kinematic range $\left(|s, t, u| \gg M^{2}\right)$

"handbag"

"cat's ears"
(Afanasev et al., Phys. Rev. D 72, 013008 (2005))
- pQCD: recent work indicates two active quarks dominate

Nucleon (elastic) intermediate state


- positive slope
- vanishes as $\varepsilon \rightarrow 1$
- nonlinearity grows with increasing $Q^{2}$
- $G_{\mathrm{M}}$ dominates in loop integral

- changes sign at low $Q^{2}$
- agrees well with static limit for point particle (no form factors in loop and $Q^{2} \rightarrow 0$ )
- $G_{\mathrm{E}}$ dominates in loop integral


## Pointlike limit (e.g. $e^{-} \mu^{+}$)

$$
\delta_{\gamma \gamma}=-\frac{2 \alpha}{\pi} \ln \eta \ln \frac{Q^{2}}{\lambda^{2}}+\delta_{\mathrm{hard}}
$$

## Static limit:

$Q^{2} \rightarrow 0$ or $M \rightarrow \infty$
$\delta_{\text {hard }}=\frac{\alpha \pi}{1+x}$

$$
x=\sqrt{(1+\epsilon) /(1-\epsilon)}
$$

Agrees with McKinley \& Feshbach (1948) 2nd Born result with $x=1 / \sin (\theta / 2)$


Massless limit: $\quad Q^{2} \rightarrow \infty$ or $M \xrightarrow{0}$

$$
\delta_{\text {hard }}=\frac{\alpha}{\pi\left(x^{2}+1\right)}\left\{\ln \left(\frac{x+1}{x-1}\right)+x\left[\pi^{2}+\ln ^{2}\left(\frac{x+1}{2}\right)+\ln ^{2}\left(\frac{x-1}{2}\right)-\ln \left(\frac{x^{2}-1}{4}\right)\right]\right\}
$$

Agrees with Nieuwenhiuzen (197I) and Afanasev et al. (2005)
Suggests hard scattering from one active quark per se cannot be responsible for a reduction in cross section at backward angles.

## Fixed E (Novosibirsk kinematics)

$\mathrm{e}^{-}-\mathrm{p}$ correction


## Fixed E (VEPP-3 Novosibirsk kinematics)

$\mathrm{e}^{-}$-p correction


Agrees with 2nd Born expression at small angles

- At forward angles TPE dominated by Coulomb distortion, while at backward angles exchange of 2 hard photons contributes


## Delta intermediate states



- $\gamma \mathrm{N} \Delta$ transition well-studied
- Dominant inelastic contribution
- More important as $Q^{2}$ increases

Resonance ( $\Delta$ ) contribution:

$$
\gamma\left(q^{\alpha}\right)+\Delta\left(p^{\mu}\right) \rightarrow \mathrm{N}
$$



- Lorentz covariant form
- Spin $1 / 2$ decoupled
- Obeys gauge symmetries

$$
\begin{aligned}
& p_{\mu} \Gamma^{\alpha \mu}(p, q)=0 \\
& q_{\alpha} \Gamma^{\alpha \mu}(p, q)=0
\end{aligned}
$$

$$
\begin{aligned}
\Gamma_{\gamma \Delta \rightarrow N}^{\alpha \mu}(p, q)= & \frac{i e F_{\Delta}\left(q^{2}\right)}{2 M_{\Delta}^{2}}\left\{g_{1}\left(g^{\alpha \mu} \not p q q-p^{\alpha} \gamma^{\mu} \not q-\gamma^{\alpha} \gamma^{\mu} p \cdot q+\gamma^{\alpha} \not p q^{\mu}\right)\right. \\
& +g_{2}\left(p^{\alpha} q^{\mu}-g^{\alpha \mu} p \cdot q\right) \\
+ & \left(g_{3} / M_{\Delta}\right)\left(q^{2}\left(p^{\alpha} \gamma^{\mu}-g^{\alpha \mu} \not p\right)+q^{\alpha}\left(q^{\mu} \not p-\gamma^{\mu} p \cdot q\right)\right\} \gamma_{5} T_{3}
\end{aligned}
$$

3 coupling constants $g_{1}, g_{2}$, and $g_{3}$
At $\Delta$ pole:

| $g_{1}$ | Magnetic |
| :--- | :--- |
| $g_{2}-g_{1}$ | Electric |
| $g_{3}$ | Coulomb |

Take dipole form factor $\mathrm{F}_{\Delta}\left(q^{2}\right)=1 /\left(1-q^{2} / \Lambda^{2}\right)^{2}$ with $\Lambda=0.75 \mathrm{GeV}$ (softer than nucleon form factors, with $\Lambda=0.84 \mathrm{GeV}$ )
Zero width approximation (okay for Re part of $\delta$ )

## Other resonances (Kondratyuk \& PGB, PRC 2007)

- N (P11), $\Delta(\mathrm{P} 33)+\mathrm{D} 13, \mathrm{D} 33, \mathrm{P} 11, \mathrm{~S} 11, \mathrm{~S} 31$
- Parameters from dressed K-matrix model


## Results

- contribution of heavier resonances much smaller than N and $\Delta$
- D13 next most important (consistent with second resonance shape of Compton scattering cross section)
- partial cancellation between spin $1 / 2$ and spin $3 / 2$
leads to better agreement, especially at high $Q^{2}$


Fit to SuperRosenbluth (JLAB) data

## Effect on ratio $\mu_{\mathrm{p}} G_{\mathrm{E}} / G_{\mathrm{M}}$



Raw results


Corrected with TPE

## Recent Advances

## Experiment

- Qweak parity-violation experiment, and the $\gamma \mathrm{Z}$ box diagram contribution
- Discrepancy between proton charge radius as measured in atomic H , muonic H , and electron scattering
- TPE effect on ratio of $e^{+} p$ to $e^{-} p$ cross sections


## Theory

- Use improved $\gamma \mathrm{N} \Delta$ form factors based on most recent data
- Use dispersion integrals to relate Real and Imaginary parts. Imaginary parts fixed by cross section data
- Valid at forward angles: must use models to extrapolate
- Incomplete: not all data is available (e.g. axial hadron coupling and isospin dependence in $\gamma Z$ diagrams
- Model-independent analysis of corrections in forward kinematics in dispersive formalism (sum rule based on total photoabsorption cross section)


## TPE effect on ratio of $e^{+} p$ to $e^{-} p$ cross sections

## CLAS collaboration (2015)

VEPP-3 Novosibirsk (2015)
$Q^{2}=1.45 \mathrm{GeV}^{2}$





## TPE using dispersion relations

(Borisyuk \& Kobushkin, Phys. Rev. C 78, 2008)


- Imaginary part determined by unitarity
- Only on-shell form factors
- Real part determined from dispersion relations
-For elastic ( N ) intermediate state, numerical differences between one loop (solid) and dispersion (dashed) analyses are tiny (all due to $\left(\mathrm{F}_{2} \times \mathrm{F}_{2}\right)$ term in box vertices


See also recent work by Tomalak \& Vanderhaeghen, Eur. Phys. J. A. (2015) 51: 24


Graczyk, Phys. Rev. C 88, 065205 (2013)
1.TPE extracted from data using Bayesian analysis 2.Use model fit that includes $N$ and $\Delta$

TABLE IV. Values of the proton radius $\sqrt{\left\langle r_{E}^{2}\right\rangle}$ obtained from the BNN and HM fits in femtometers.

| BNN | fit I | fit II |
| :--- | :---: | :---: |
| $0.85 \pm 0.01$ | $0.898 \pm 0.001$ | $0.867 \pm 0.002$ |



Lorenz et al., Phys. Rev. D 91, 014023 (2015)


- Used $\gamma \mathrm{N} \Delta$ form factors fit to recent data
- Find smaller results than Kondratyuk \& PGB
- (consistent with softer form factor $\Lambda=0.75 \mathrm{GeV}$ than for nucleon)
- Claim substantial effect on the determination of the proton charge radius from scattering data


Zhou and Yang, arXiv: 1407.2711 (2015)


Include all 3 multipoles, with form factors fit to recent CLAS data

$$
Q^{2}=3 \mathrm{GeV}
$$

Plot vs. energy instead of $\varepsilon$

- Imaginary part well-behaved
- Dispersive integral also wellbehaved
(e.g. vanishes at $\varepsilon \rightarrow 0$ )


- Real part from loop calculation diverges linearly with energy (violation of Froissart bound)
- Problem due to momentumdependent vertices, uncontrained by on-shell condition

Resonance ( $\Delta$ ) contribution:

$$
\gamma\left(q^{a}\right)+\Delta\left(p^{\mu}\right) \rightarrow \mathrm{N}
$$

$$
\begin{aligned}
\Gamma_{\gamma \Delta \rightarrow N}^{\alpha \mu}(p, q)= & \frac{i e F_{\Delta}\left(q^{2}\right)}{2 M_{\Delta}^{2}}\left\{g_{1}\left(g^{\alpha \mu} \not p q-p^{\alpha} \gamma^{\mu} \not \mathscr{d}-\gamma^{\alpha} \gamma^{\mu} p \cdot q+\gamma^{\alpha} \not p q^{\mu}\right)\right. \\
& +g_{2}\left(p^{\alpha} q^{\mu}-g^{\alpha \mu} p_{p} \cdot q\right) \\
+ & \left(g_{3} / M_{\Delta}\right)\left(q^{2}\left(p^{\alpha} \gamma^{\mu}-g^{\alpha \mu} \not p\right)+q^{\alpha}\left(q^{\mu} \not p-\gamma^{\mu} p \cdot q\right)\right\} \gamma_{5} T_{3}
\end{aligned}
$$

3 coupling constants $g_{1}, g_{2}$, and $g_{3}$
At $\Delta$ pole:
$g_{1} \quad$ Magnetic (dominant contribution)
$g_{2}-g_{1} \quad$ Electric
$g_{3} \quad$ Coulomb

## Dispersion method

$$
\begin{aligned}
S & =1+i \mathcal{M} \\
S^{\dagger} & =1-i \mathcal{M}^{\dagger} \\
S S^{\dagger} & =1
\end{aligned}
$$



Unitarity $\rightarrow \quad-i\left(\mathcal{M}-\mathcal{M}^{\dagger}\right)=2 \Im m \mathcal{M}=\mathcal{M}^{\dagger} \mathcal{M}$

$$
\Im m\langle f| \mathcal{M}|i\rangle=\frac{1}{2} \int d \rho \sum_{n}\langle f| \mathcal{M}^{*}|n\rangle\langle n| \mathcal{M}|i\rangle
$$

$$
d \rho=\frac{d^{3} k_{1}}{(2 \pi)^{3} 2 E_{k_{1}}} \sim d W_{n} d Q_{1}^{2} d Q_{2}^{2}
$$

$\rightarrow$ dispersion relation

$$
\Re e \delta\left(\nu^{\prime}\right)=\frac{2 \nu^{\prime}}{\pi} \int_{\nu_{\mathrm{th}}}^{\infty} d \nu \frac{1}{\nu^{2}-\nu^{\prime 2}} \Im m \delta(\nu) ; \quad \nu=(s-u) / 4
$$

$\rightarrow$ imaginary part given by

$$
\Im m \delta(\nu) \sim \alpha \int d W \underbrace{\int d Q_{1}^{2} \int d Q_{2}^{2} \frac{1}{Q_{1}^{2} Q_{2}^{2}}\left\{L_{i j k} H^{i j k}\right\}}
$$

- For dipole form factors, 2D integral can be done analytically; expressible in terms of elementary functions.
- Can also be done numerically for more general form factor parametrizations
$\nu_{\text {th }}$ extends into the unphysical region ( $\varepsilon<0$ )


PGB: dispersive calculation


Graczyk, Phys. Rev. C 88, 065205 (2013) loop calculation

Both techniques agree reasonably well at low $\varepsilon$ (small $E$ ), but only the dispersive method gives a vanishing contribution as $\varepsilon \rightarrow 1$.

## Why? Isn't this contrary to Cutkowsky rules?

## Loop

Dispersive


Borisyuk \& Kobushkin, arXiv:1506.02682 (2015)
 helicity amplitudes

- Include a finite width
- Contributions tend to cancel, in qualitative agreement with Kondratyuk \& Blunden result 亮


Gorchtein, arXiv: 1406.1612 (2014)

## Model-independent analysis of corrections in forward kinematics (forward angles, low $Q^{2}$ ) using dispersive analysis

TPE amplitude $\Phi(\mathrm{E})$ : $\quad$ See also Brown, Phys Rev D 1, 1432 (1970)

$$
\begin{gathered}
\Im m \Phi(E)=\frac{Q^{2}}{4 \pi^{2}} \int_{E_{\pi}}^{E} \frac{d \omega}{\omega} \sigma_{T}(\omega) \ln \left(\frac{4 \omega_{\mathrm{cm}}^{2}}{Q^{2}}\right)\left[1-\frac{\omega}{E}+\frac{\omega^{2}}{2 E^{2}}\right] \\
\begin{array}{c}
\text { Total photoabsorption } \\
\text { cross section }
\end{array} \\
\end{gathered}
$$

## Summary

- Lots of interesting new theoretical work motivated by new experimental results
- Dispersive method promising approach with connection to data in forward angle limit
-A similar approach is essential for the $\gamma \mathrm{Z}$ box in Qweak parity-violation kinematics

