Overview of recent advances
in calculations of two-photon
exchange effects

Peter Blunden

University of Manitoba

Intense Electron Beams VWorkshop

June 18,2015



Outline
* Summary of key results (circa 2003-2008)

Review: Arrington, PGB, Melnitchouk, Prog. Nucl. Part. Phys., (2011)
—impact on form factor measurements
—what is connection to 2" Born approximation?
—what happens at very low 0??

—how do resonances and partonic description enter as O
increases?

* Recent advances
—improved hadronic model parameters (fit to data)
—use of dispersion relations and connection to data
—new experimental results
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Two-photon exchange

B interference between Born and two-photon exchange amplitudes

B contribution to cross section:
2Re {./\/l(]; ./\/lw}

5(27) — .
Mo

B standard “soft photon approximation” (used in most data analyses)

—> approximate integrand in M., by values at ~* poles

—> neglect nucleon structure (no form factors) Mo, Tsai (1969)
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Various Approaches (circa 2003-2008)

Low to moderate O k ———>
hadronic: N + A + N* etc. q, 3

- as (J? increases more and P p
more parameters,
less and less reliable (PGB et al., Phys. Rev. Lett 91, 142304 (2003))
Moderate to high O’ S>> A
« GPD approach: assumption of hard photon
interaction with | active quark >
+ Embed in nucleon using Generalized . g
Parton Distributions 3 . W, .
handbag cat’s ears
+ Valid only in certain kinematic
range (|s,t,u| > M?) (Afanasev ef al., Phys. Rev. D 72, 013008 (2005))

+ pQCD: recent work indicates two active
quarks dominate



Nucleon (elastic) intermediate state

* positive slope

* vanishes as e— 1

* nonlinearity grows with
increasing O

* Gm dominates in loop
integral

—006 - [ | L | L | L |
0

* changes sign at low O?
* agrees well with static limit

for point particle (no form
factors in loop and O*— ()

* Gt dominates in loop
integral
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Agrees with Nieuwenhiuzen (1971) and Afanasev et al. (2005)

Suggests hard scattering from one active quark per se cannot be
responsible for a reduction in cross section at backward angles.



Fixed E (Novosibirsk kinematics)

e -p correction
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Fixed E (VEPP-3 Novosibirsk kinematics)

e -p correction
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Agrees with 2nd Born expression at small angles

» At forward angles TPE dominated by Coulomb distortion, while at
backward angles exchange of 2 hard photons contributes



Delta intermediate states

P(p2)  N,A P'(p4) N, A
(a) (0)

* yNA transition well-studied
* Dominant inelastic contribution
* More important as (J* increases



Resonance (A) contribution: ™ g

YNA vertex
y(g*) + A(p*) — N
pu—
Lorentz covariant form
Spin 4 decoupled pul **(p,q) = O
Obeys gauge symmetries gl *H(p,q) = O
L ieFA(QQ) a ol o o g L
YNNI () a2 (g —pT —Y p g+ )
A

+ 92 (p%¢" — g™'p - )
+ (g3/Mp) (™" — g°"¥) + ¢* (¢"¥ — +"'p - ) }15T3

3 coupling constants g, g,, and g;

At A pole: g Magnetic (dominant contribution)
-2 Electric
Je Coulomb

Take dipole form factor F,(¢?) = 1/(1-g?/A?%)?
with A =0.75 GeV (softer than nucleon form factors, with A = 0.84 GeV)
Zero width approximation (okay for Re part of 0)



Other resonances (Kondratyuk & PGB, PRC 2007)

N (P11), A (P33) + D13, D33, P11, S11, S31

Parameters from dressed K-matrix model

! |
Results | AR=0.84 GeV
Qo=
contribution of heavier resonances 9.5 I- 7
much smaller than N and A

9.0 - _
D13 next most important (consistent
with second resonance shape of CDD a5 | 1
Compton scattering cross section) B
partial cancellation between spin 1/2 8.0 -
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Fit to SuperRosenbluth (JLAB) data



Effect on ratio up Ge/Gwm

Raw results Corrected with TPE



Recent Advances

Experiment

« Qweak parity-violation experiment, and the yZ box diagram contribution

« Discrepancy between proton charge radius as measured in atomic H, muonic H,
and electron scattering

« TPE effect on ratio of e"p to ep cross sections

Theory
« Use improved yNA form factors based on most recent data

« Use dispersion integrals to relate Real and Imaginary parts. Imaginary parts fixed by
cross section data

+ Valid at forward angles: must use models to extrapolate

 Incomplete: not all data is available (e.g. axial hadron coupling and isospin
dependence in yZ diagrams

+ Model-independent analysis of corrections in forward kinematics in dispersive formalism
(sum rule based on total photoabsorption cross section)
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TPE using dispersion relations
(Borisyuk & Kobushkin, Phys. Rev. C 78, 2008)

*Imaginary part determined by
unitarity

*Only on-shell form factors

*Real part determined from
dispersion relations

*For elastic (N) intermediate state,
numerical differences between
one loop (solid) and dispersion
(dashed) analyses are tiny (all due
to (F, x F;) term in box vertices
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See also recent work by Tomalak & Vanderhaeghen, Eur. Phys. J. A. (2015) 51: 24
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4 Graczyk, Phys. Rev. C 88, 065205 (2013)
-0.01F
1. TPE extracted from data
-0.02r using Bayesian analysis
2.Use model fit that includes
-0.03f
N and A
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TABLE IV. Values of the proton radius 1/(rz) obtained from the 0.01 .
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* Used yNA form factors fit to recent data

* Find smaller results than Kondratyuk & PGB

* (consistent with softer form factor A=0.75 GeV than for nucleon)

e Claim substantial effect on the determination of the

proton charge radius from scattering data
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Include all 3 multipoles, with form factors fit to recent
CLAS data



Plot vs. energy instead of ¢

* Imaginary part well-behaved |
* Dispersive integral also well- %
behaved

(e.g. vanishes at e— 0)
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* Real part from loop

calculation diverges linearly
with energy (violation of
Froissart bound)

* Problem due to momentum-

dependent vertices,
uncontrained by on-shell
condition




Resonance (A) contribution: ™ g

v(g®) + A(p*) — N YNA vertex

o )
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oA n®a) =

3 coupling constants g, g,, and g;

At A pole: g Magnetic (dominant contribution)
2r-g Electric
Jo Coulomb



Dispersion method

on shell
W
S =14+ iM K = k
T — 1 _ 2 AAT
S'=1-—-1M » »
SST =

Unitarity = —i (M — MT) =23m M = MM

m (F M) / dp 371 )l M)

d>kq

~ dW.. dQ? dQ?
(27)32F,, Q1 dQ;

dp =



— dispersion relation

Red (V') = 2V /OO dv : Imo(v); v=(s—u)/4

T 12 — p!2
th

— imaginary part given by

Imo(v) Na/dW/dQ%/ng Qzl : {Liijijk}
1

2
-—_ - —-—-—m

* For dipole form factors, 2D integral can be done
analytically; expressible in terms of elementary functions.

* Can also be done numerically for more general form
factor parametrizations

vih extends into the unphysical region (£<0)
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Graczyk, Phys. Rev. C 88, 065205 (2013)

PGB: dispersive calculation )
loop calculation

Both techniques agree reasonably well at
low ¢ (small E), but only the dispersive method

gives a vanishing contribution as ¢ — 1.



Why!? lIsn’t this contrary to Cutkowsky rules?
Y 4 Y

Loop Dispersive

contact term
Im part =0



Borisyuk & Kobushkin, arXiv:1506.02682 (2015)

do/o, %

* Include other spin 1/2 and 3/2

resonances using MAID
helicity amplitudes

* Include a finite width

* Contributions tend to cancel,
in qualitative agreement with
Kondratyuk & Blunden result
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Gorchtein, arXiv: 1406.1612 (2014)

Model-independent analysis of corrections in forward kinematics
(forward angles, low (?) using dispersive analysis

TPE amplitude ®(E): See also  Brown, Phys Rev D 1, 1432 (1970)
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Summary

* Lots of interesting new theoretical work motivated
by new experimental results

* Dispersive method promising approach with
connection to data in forward angle limit

—A similar approach is essential for the yZ box in Qweak
parity-violation kinematics



