Overview of recent advances in calculations of two-photon exchange effects

Peter Blunden University of Manitoba

Intense Electron Beams Workshop

June 18, 2015

Outline

• Summary of key results (circa 2003-2008)

Review: Arrington, PGB, Melnitchouk, Prog. Nucl. Part. Phys., (2011)

- -impact on form factor measurements
- -what is connection to 2nd Born approximation?
- -what happens at very low Q^2 ?
- -how do resonances and partonic description enter as Q^2 increases?
- Recent advances
 - -improved hadronic model parameters (fit to data)
 - -use of dispersion relations and connection to data
 - -new experimental results

Proton G_E/G_M **Ratio**

 $\underline{\text{LT} \text{ method}}$ $\sigma_R = G_M^2(Q^2) + \frac{\varepsilon}{\tau} G_E^2(Q^2)$

- \rightarrow G_E from slope in ε plot
- \rightarrow suppressed at large Q^2

 $\frac{PT}{G_E} = -\sqrt{\frac{\tau(1+\varepsilon)}{2\varepsilon}} \frac{P_T}{P_L}$

 $\rightarrow P_{T,L} \text{ recoil proton} \\ \text{polarization in } \vec{e} \ p \rightarrow e \ \vec{p}$

Two-photon exchange

interference between Born and two-photon exchange amplitudes

contribution to cross section:

$$\delta^{(2\gamma)} = \frac{2\mathcal{R}e\left\{\mathcal{M}_{0}^{\dagger} \ \mathcal{M}_{\gamma\gamma}\right\}}{\left|\mathcal{M}_{0}\right|^{2}}$$

standard "soft photon approximation" (used in most data analyses)

- \rightarrow approximate integrand in $\mathcal{M}_{\gamma\gamma}$ by values at γ^* poles
- → neglect nucleon structure (no form factors) *Mo*, *Tsai* (1969)

Various Approaches (circa 2003-2008)

Low to moderate Q^2 :

hadronic: $N + \Delta + N^*$ etc.

 as Q² increases more and more parameters, less and less reliable

(PGB et al., Phys. Rev. Lett 91, 142304 (2003))

Moderate to high Q^2 :

- GPD approach: assumption of hard photon interaction with I active quark
 - Embed in nucleon using Generalized Parton Distributions
 - Valid only in certain kinematic range $(|s,t,u| \gg M^2)$
- pQCD: recent work indicates two active quarks dominate

"handbag"

"cat's ears"

(Afanasev et al., Phys. Rev. D 72, 013008 (2005))

Nucleon (elastic) intermediate state

- positive slope
- vanishes as $\varepsilon \rightarrow 1$
- nonlinearity grows with increasing $Q^2\,$
- G_M dominates in loop integral

- changes sign at low $Q^{\rm 2}$
- agrees well with static limit for point particle (no form factors in loop and $Q^2 \rightarrow 0$)
- G_E dominates in loop integral

$$\delta_{\text{hard}} = \frac{\alpha}{\pi (x^2 + 1)} \left\{ \ln \left(\frac{x + 1}{x - 1} \right) + x \left[\pi^2 + \ln^2 \left(\frac{x + 1}{2} \right) + \ln^2 \left(\frac{x - 1}{2} \right) - \ln \left(\frac{x^2 - 1}{4} \right) \right] \right\}$$

Agrees with Nieuwenhiuzen (1971) and Afanasev et al. (2005)

Suggests hard scattering from one active quark per se cannot be responsible for a reduction in cross section at backward angles.

Fixed E (Novosibirsk kinematics)

e⁻-p correction

Fixed E (VEPP-3 Novosibirsk kinematics)

e⁻-p correction

Agrees with 2nd Born expression at small angles

 At forward angles TPE dominated by Coulomb distortion, while at backward angles exchange of 2 hard photons contributes

Delta intermediate states

- $\gamma N\Delta$ transition well-studied
- Dominant inelastic contribution
- More important as Q^2 increases

Resonance (Δ) contribution: $\gamma(q^{\alpha}) + \Delta(p^{\mu}) \rightarrow N$

Lorentz covariant form

• Spin $\frac{1}{2}$ decoupled

Obeys gauge symmetries

 $p_{\mu}\Gamma^{\alpha\mu}(p,q) = 0$ $q_{\alpha}\Gamma^{\alpha\mu}(p,q) = 0$

$$\Gamma^{\alpha\mu}_{\gamma\Delta\to N}(p,q) = \frac{ieF_{\Delta}(q^2)}{2M_{\Delta}^2} \{ g_1(g^{\alpha\mu} \not\!\!\!/ q - p^{\alpha}\gamma^{\mu} q - \gamma^{\alpha}\gamma^{\mu} p \cdot q + \gamma^{\alpha} \not\!\!/ q^{\mu}) + g_2(p^{\alpha}q^{\mu} - g^{\alpha\mu}p \cdot q) + g_2(p^{\alpha}q^{\mu} - g^{\alpha\mu}p \cdot q) + (g_3/M_{\Delta}) \left(q^2(p^{\alpha}\gamma^{\mu} - g^{\alpha\mu}\not\!\!/ p) + q^{\alpha}(q^{\mu}\not\!\!/ - \gamma^{\mu}p \cdot q) \right) \gamma_5 T_3$$

3 coupling constants g_1, g_2 , and g_3 At Δ pole: g_1 Magnetic (dominant contribution) g_2 - g_1 Electric g_3 Coulomb

Take dipole form factor $F_{\Delta}(q^2) = 1/(1-q^2/\Lambda^2)^2$

with $\Lambda = 0.75$ GeV (softer than nucleon form factors, with $\Lambda = 0.84$ GeV) Zero width approximation (okay for Re part of δ)

Other resonances (Kondratyuk & PGB, PRC 2007)

- N (P11), Δ (P33) + D13, D33, P11, S11, S31
- Parameters from dressed K-matrix model

Results

- contribution of heavier resonances much smaller than N and Δ
- D13 next most important (consistent with second resonance shape of Compton scattering cross section)
- partial cancellation between spin 1/2 and spin 3/2
- leads to better agreement, especially at high $Q^{\rm 2}$

Fit to SuperRosenbluth (JLAB) data

Effect on ratio $\mu_p G_E/G_M$

Raw results

Corrected with TPE

Recent Advances

Experiment

- Qweak parity-violation experiment, and the γZ box diagram contribution
- Discrepancy between proton charge radius as measured in atomic H, muonic H, and electron scattering
- TPE effect on ratio of e^+p to e^-p cross sections

Theory

- Use improved $\gamma N\Delta$ form factors based on most recent data
- Use dispersion integrals to relate Real and Imaginary parts. Imaginary parts fixed by cross section data
 - Valid at forward angles: must use models to extrapolate
 - Incomplete: not all data is available (e.g. axial hadron coupling and isospin dependence in γZ diagrams
- Model-independent analysis of corrections in forward kinematics in dispersive formalism (sum rule based on total photoabsorption cross section)

TPE effect on ratio of e^+p to e^-p cross sections

CLAS collaboration (2015)

VEPP-3 Novosibirsk (2015)

 $Q^{2}=1.45 \text{ GeV}^{2}$

TPE using dispersion relations (Borisyuk & Kobushkin, Phys. Rev. C **78**, 2008)

k k' k' k" k" $\int dk'' \sum_{h}$ Χ 2 Im p р -0.2 Imaginary part determined by unitarity -0.4 Only on-shell form factors $Q^2 = 1.0 \text{ GeV}^2$ Real part determined from $\delta \mathcal{G}_{\mathrm{M}}/\mathrm{G}_{\mathrm{M}},\%$ -0.6 dispersion relations •For elastic (N) intermediate state, numerical differences between -0.8 PGE one loop (solid) and dispersion (dashed) analyses are tiny (all due -1 to $(F_2 \times F_2)$ term in box vertices B&K -1.2 0.2 0.4 0.6 0.8 0

ε

See also recent work by Tomalak & Vanderhaeghen, Eur. Phys. J. A. (2015) 51:24

Graczyk, Phys. Rev. C 88, 065205 (2013)

 TPE extracted from data using Bayesian analysis
Use model fit that includes N and Δ

TABLE IV. Value	is of the proton radius $\sqrt{\langle r_E^2 \rangle}$	$\overline{\rangle}$ obtained from the
BNN and HM fits in f	femtometers.	

BNN	fit I	fit II
0.85 ± 0.01	0.898 ± 0.001	$0.867 \pm 0.002 \triangleleft$

Lorenz et al., Phys. Rev. D 91, 014023 (2015)

• Used $\gamma N\Delta$ form factors fit to recent data

- Find smaller results than Kondratyuk & PGB
 - (consistent with softer form factor Λ =0.75 GeV than for nucleon)
- Claim substantial effect on the determination of the proton charge radius from scattering data

Include all 3 multipoles, with form factors fit to recent CLAS data

$$\Gamma^{\alpha\mu}_{\gamma\Delta\to N}(p,q) = \frac{ieF_{\Delta}(q^2)}{2M_{\Delta}^2} \{ g_1(g^{\alpha\mu} \not\!\!\!/ q - p^{\alpha}\gamma^{\mu} q - \gamma^{\alpha}\gamma^{\mu} p \cdot q + \gamma^{\alpha} \not\!\!/ q^{\mu}) + g_2(p^{\alpha}q^{\mu} - g^{\alpha\mu}p \cdot q) + g_2(p^{\alpha}q^{\mu} - g^{\alpha\mu}p \cdot q) + (g_3/M_{\Delta}) \left(q^2(p^{\alpha}\gamma^{\mu} - g^{\alpha\mu}\not\!\!/ p) + q^{\alpha}(q^{\mu}\not\!\!/ - \gamma^{\mu}p \cdot q) \right) \gamma_5 T_3$$

3 coupling constants g_1, g_2 , and g_3 At Δ pole: g_1 Magnetic (dominant contribution) g_2 - g_1 Electric g_3 Coulomb

Dispersion method on shell

 $S = 1 + i\mathcal{M}$ $S^{\dagger} = 1 - i\mathcal{M}^{\dagger}$ $SS^{\dagger} = 1$ $k \rightarrow q_{1}$ q_{1} $p \rightarrow q_{1}$

Unitarity $\rightarrow -i \left(\mathcal{M} - \mathcal{M}^{\dagger} \right) = 2\Im m \mathcal{M} = \mathcal{M}^{\dagger} \mathcal{M}$

$$\Im m \langle f | \mathcal{M} | i \rangle = \frac{1}{2} \int d\rho \sum_{n} \langle f | \mathcal{M}^* | n \rangle \langle n | \mathcal{M} | i \rangle$$

$$d\rho = \frac{d^3k_1}{(2\pi)^3 2E_{k_1}} \sim dW_n \, dQ_1^2 \, dQ_2^2$$

 \rightarrow dispersion relation

$$\Re e\delta(\nu') = \frac{2\nu'}{\pi} \int_{\nu_{\rm th}}^{\infty} d\nu \ \frac{1}{\nu^2 - \nu'^2} \Im m\delta(\nu); \qquad \nu = (s-u)/4$$

 \rightarrow imaginary part given by

$$\Im m\delta(\nu) \sim \alpha \int dW \underbrace{\int dQ_1^2 \int dQ_2^2}_{1} \frac{1}{Q_1^2 Q_2^2} \left\{ L_{ijk} H^{ijk} \right\}$$

- For dipole form factors, 2D integral can be done analytically; expressible in terms of elementary functions.
- Can also be done numerically for more general form factor parametrizations

 v_{th} extends into the unphysical region ($\varepsilon < 0$)

PGB: dispersive calculation

Graczyk, Phys. Rev. C 88, 065205 (2013) loop calculation

Both techniques agree reasonably well at low ε (small E), but only the dispersive method gives a vanishing contribution as $\varepsilon \to 1$.

Why? Isn't this contrary to Cutkowsky rules?

Loop

Dispersive

contact term Im part = 0

Borisyuk & Kobushkin, arXiv:1506.02682 (2015)

- Include other spin 1/2 and 3/2 resonances using MAID helicity amplitudes
- Include a finite width
- Contributions tend to cancel, in qualitative agreement with Kondratyuk & Blunden result

Model-independent analysis of corrections in forward kinematics (forward angles, low Q^2) using dispersive analysis

TPE amplitude $\Phi(E)$: See also Brown, Phys Rev D 1, 1432 (1970)

Summary

- Lots of interesting new theoretical work motivated by new experimental results
- Dispersive method promising approach with connection to data in forward angle limit
 - -A similar approach is essential for the γZ box in Qweak parity-violation kinematics