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Outline
• Summary of key results (circa 2003-2008)

   Review:   Arrington, PGB, Melnitchouk, Prog. Nucl. Part. Phys., (2011)

–impact on form factor measurements
–what is connection to 2nd Born approximation?
–what happens at very low Q2 ?

–how do resonances and partonic description enter as Q2 

increases?

• Recent advances
–improved hadronic model parameters (fit to data)
–use of dispersion relations and connection to data
–new experimental results



II. OVERVIEW OF FORM FACTOR MEASUREMENTS

We begin with a brief description of the Rosenbluth sepa-

ration and recoil polarization techniques, focusing on the ex-

isting data and potential problems with the extraction tech-

niques.

A. Rosenbluth technique

The unpolarized differential cross section for elastic scat-

tering can be written in terms of the cross section for scat-

tering from a point charge and the electric and magnetic form

factors:
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where #!Q2/4Mp
2 , % is the electron scattering angle, Q2
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2(%/2), and Ee and Ee! are the incoming and scat-

tered electron energies. One can then define a reduced cross

section,
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where ( is the longitudinal polarization of the virtual photon
)(#1!1"2(1"#)tan2(%/2)* . At fixed Q2, i.e., fixed # , the
form factors are constant and !R depends only on ( . A
Rosenbluth, or longitudinal-transverse $LT&, separation in-
volves measuring cross sections at several different beam

energies while varying the scattering angle to keep Q2 fixed

while varying ( . GEp

2 can then be extracted from the slope of

the reduced cross section versus ( , and #GMp

2 from the in-

tercept. Note that because the GMp

2 term has a weighting of

#/( with respect to the GEp

2 term, the relative contribution of

the electric form factor is suppressed at high Q2, even for

(!1.
Because the electric form is extracted from the difference

of reduced cross section measurements at various ( values,
the uncertainty in the extracted value of GEp

2 (Q2) is roughly

the uncertainty in that difference, magnified by factors of

(+()#1 and (#GMp

2 /GEp

2 ). This enhancement of the experi-

mental uncertainties can become quite large when the range

of ( values covered is small or when # (!Q2/4Mp
2) is large.

This is especially important when one combines high-( data
from one experiment with low-( data from another to extract
the ( dependence of the cross section. In this case, an error in
the normalization between the datasets will lead to an error

in GEp

2 for all Q2 values where the data are combined. If

,pGEp
!GMp

, GEp
contributes at most 8.3% $4.3%& to the

total cross section at Q2!5(10) GeV2, so a normalization
difference of 1% between a high-( and low-( measurement
would change the ratio ,pGEp

/GMp
by 12% at Q2

!5 GeV2 and 23% at Q2!10 GeV2, more if +($1. There-
fore, it is vital that one properly accounts for the uncertainty

in the relative normalization of the data sets when extracting

the form factor ratios. The decreasing sensitivity to GEp
at

large Q2 values limits the range of applicability of Rosen-

bluth extractions; this was the original motivation for the

polarization transfer measurements, whose sensitivity does

not decrease as rapidly with Q2.

B. Recoil polarization technique

In polarized elastic electron-proton scattering, p(e! ,e!p! ),
the longitudinal (Pl) and transverse (Pt) components of the

recoil polarization are sensitive to different combinations of

the electric and magnetic elastic form factors. The ratio of

the form factors, GEp
/GMp

, can be directly related to the

components of the recoil polarization )10–13*:
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where Pl and Pt are the longitudinal and transverse compo-

nents of the final proton polarization. Because GEp
/GMp

is

proportional to the ratio of polarization components, the

measurement does not require an accurate knowledge of the

beam polarization or analyzing power of the recoil polarim-

eter. Calculations of radiative corrections indicate that the

effects on the recoil polarizations are small and at least par-

tially cancel in the ratio of the two-polarization component

)14*.
Figure 2 shows the measured values of ,pGEp

/GMp
from

the MIT-Bates )4,5* and JLab )6–8* experiments, both coin-
cidence and single-arm measurements, along with the linear

fit of Ref. )8* to the data from Refs. )6,8*:

,pGEp
/GMp

!1#0.13$Q2#0.04&, $4&

with Q2 in GeV2. Comparing the data to the fit, the total -2

is 34.9 for 28 points, including statistical errors only. Assum-

ing that the systematic uncertainties for each experiment are

fully correlated, we can vary the systematic offset for each

data set and the total -2 decreases to 33.6. If we allow the

systematic offset to vary for each dataset and refit the Q2

dependence to all four datasets using the same two-parameter

fit as above, i.e.,

FIG. 1. $Color online& Ratio of electric to magnetic form factor

as extracted by Rosenbluth measurements $hollow squares& and
from the JLab measurements of recoil polarization $solid circles&.
The dashed line is the fit to the polarization transfer data.
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Two-photon exchange

interference between Born and two-photon exchange amplitudes

X

contribution to cross section:

δ(2γ) =
2Re

�
M†

0 Mγγ

�

|M0|2

standard “soft photon approximation” (used in most data analyses)

Mo, Tsai (1969)

MγγM0

neglect nucleon structure (no form factors)

approximate integrand in          by values at      polesMγγ γ∗
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Low to moderate Q2:

hadronic: N + Δ + N* etc.
• as Q2 increases more and

more parameters,
less and less reliable 

Moderate to high Q2:
• GPD approach: assumption of hard photon

interaction with 1 active quark

• Embed in nucleon using Generalized 
Parton Distributions

• Valid only in certain kinematic
range (|s,t,u| ≫ M²)

• pQCD:  recent work indicates two active 
quarks dominate

“handbag” “cat’s ears”
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Various Approaches (circa 2003-2008)

(Afanasev et al., Phys. Rev. D 72, 013008 (2005))

(PGB et al., Phys. Rev. Lett 91, 142304 (2003))
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• positive slope
• vanishes as ε→ 1
• nonlinearity grows with

increasing Q2

• GM dominates in loop 
integral

• changes sign at low Q2

• agrees well with static limit 
for point particle (no form 
factors in loop and Q²→ 0)

• GE dominates in loop 
integral

Nucleon (elastic) intermediate state
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Agrees with McKinley & Feshbach (1948) 
2nd Born result with  x=1/sin(θ/2) 
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Massless limit:

Agrees with Nieuwenhiuzen (1971) and Afanasev et al. (2005)

δγγ = −2α

π
ln η ln

Q2

λ2
+ δhardPointlike limit (e.g.  e- µ+)

Suggests hard scattering from one active quark per se cannot be 
responsible for a reduction in cross section at backward angles.
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Agrees with 2nd Born expression at small angles
• At forward angles TPE dominated by Coulomb distortion, while at 

backward angles exchange of 2 hard photons contributes
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FIG. 1: Two-photon exchange diagrams with ∆ excitation for elastic ep scattering.

amplitude for the box diagram in Fig. 1(a) is given as,

M (a,∆) = −i

∫

d4k

(2π)4
u(p3)(−ieγµ)

i(p/1 + p/2 − k/)

(p1 + p2 − k)2 −m2
e + iε

(−ieγν)u(p1)
−i

(p4 − k)2 + iε

×
−i

(k − p2)2 + iε
u(p4)Γ

µα
γ∆→N(k, p4 − k)

−i(k/+M∆)P
3/2
αβ (k)

k2 −M2
∆ + iε

Γνβ
γN→∆(k, k − p2)u(p2),

(4)

where

P 3/2
αβ (k) = gαβ −

γαγβ
3

−
(k/γαkβ + kαγβk/)

3k2
, (5)

is the spin-3/2 projector. Amplitude for the cross-box diagram Fig. 1(b) M (b,∆) can be

written down in similar manner. The amplitude in Eq. (4) is IR finite because when

the four-momentum of the photon approaches zero, the γN∆ vertex functions Γ′s also

approaches zero. Therefore we do not have to include an infinitesimal photon mass in the

photon propagators to regulate the IR divergence in Eq. (4). The vertex functions Γ′s

for γ∆ → N and γN → ∆ are defined by

u(p+ q)Γµα
γ∆→N(p, q)u

∆
α (p) = −ie〈N(p + q)|Jµ

EM |∆(p)〉, (6)

u∆
β (p)Γ

νβ
γN→∆(p, q)u(p− q) = −ie〈∆(p)|Jν

EM |N(p− q)〉, (7)

where the q′s in both Γµα
γ∆→N(p, q) and Γβν

γN→∆ refer to the incoming momentum of the

photon, as in [15].

We now elaborate, in the followings, on the three improvements over the previous

calculations we will carry out in this study.

Delta intermediate states

• γNΔ transition well-studied
• Dominant inelastic contribution
• More important as Q² increases



Resonance (Δ) contribution:
 γ(qα) + Δ(pµ) → N

pµ!

qα+

• Lorentz covariant form
• Spin ½ decoupled
• Obeys gauge symmetries

3 coupling constants g1, g2, and g3
At Δ pole:	
 g1  	
 Magnetic (dominant contribution)
	
 	
 g2-g1  	
 Electric
	
       	
 g3 	
 Coulomb

Take dipole form factor   FΔ(q2) = 1/(1-q2/Λ2)2

     with Λ = 0.75 GeV (softer than nucleon form factors, with Λ = 0.84 GeV)
Zero width approximation (okay for Re part of δ)

γNΔ vertex



Other resonances  (Kondratyuk & PGB, PRC 2007)

 N (P11), Δ (P33) + D13, D33, P11, S11, S31
 Parameters from dressed K-matrix model

Results

• contribution of heavier resonances
  much smaller than N and Δ 

• D13 next most important (consistent
   with second resonance shape of
   Compton scattering cross section)

• partial cancellation between spin 1/2 
   and spin 3/2

• leads to better agreement, especially
   at high Q2

Fit to SuperRosenbluth (JLAB) data



Raw results Corrected with TPE

Effect on ratio µp GE/GM



Recent Advances
Experiment
• Qweak parity-violation experiment, and the γZ box diagram contribution

• Discrepancy between proton charge radius as measured in atomic H, muonic H,
and electron scattering

• TPE effect on ratio of e+p to e-p cross sections

Theory
• Use improved γNΔ form factors based on most recent data

• Use dispersion integrals to relate Real and Imaginary parts. Imaginary parts fixed by 
cross section data

• Valid at forward angles:  must use models to extrapolate

• Incomplete:  not all data is available (e.g. axial hadron coupling and isospin 
dependence in γZ diagrams

• Model-independent analysis of corrections in forward kinematics in dispersive formalism
(sum rule based on total photoabsorption cross section)



TPE effect on ratio of e+p to e-p cross sections

each bin by Monte Carlo integration. The radiative cor-
rection ranged from 0.4% atQ2 ¼ 0.23 GeV2 and ε ¼ 0.88
to a maximum of 3% at Q2 ¼ 1.45 GeV2 and ε ¼ 0.4. The
uncorrected, R, and radiatively corrected, R0, eþp=e−p
cross section ratios are tabulated in the Supplemental
Material [44].
Systematic uncertainties were carefully investigated. The

uncertainty due to the target vertex cuts is the difference in
the cross section ratios, R, between 26 cm and 28 cm target
cuts. The uncertainty due to the fiducial cuts is the difference
in R between nominal and tighter fiducial cuts. The
uncertainty due to the elastic event selection is the difference
in R between 3σ and 3.5σ kinematic cuts. Relaxing the
elastic event selection cuts from 3σ to 3.5σ doubled the
background. Thus the kinematic cut uncertainty also
includes the background subtraction uncertainty. We varied
the background fitting region to determine the additional
uncertainty associated with the fitting procedure. We used
the sixfold symmetry of CLAS to calculate R independently
for each kinematic bin for leptons detected in each of the
CLAS sectors (for bins and sectors with good overall
efficiency). We compared the variance of the measurements
with the statistically expected variance to determine the
uncertainty due to detector imperfections (0.35%). The
variation in R among the beam chicane magnet cycles
was included as an uncertainty (0.3%). The uncertainty in
the radiative correction was estimated to be 15% of the
correction (point to point) plus a correlated uncertainty of
0.3% for Q2¼1.45GeV2 and 0.15% for ε¼0.88. The
uncertainties are tabulated in the Supplemental Material [44].
Figure 3 shows the ratio R0 at Q2 ¼ 1.45 GeV2 and at

ε ¼ 0.88 compared to hadronic calculations. Blunden et al.
[26] calculated the TPE amplitude using only the elastic
nucleon intermediate state. Zhou and Yang [45] considered
both the nucleon and the Δð1232Þ in the intermediate state.
These calculations bring the form factor ratio extracted
from the unpolarized measurements into good agreement
with the polarization transfer measurements at Q2 <
2–3 GeV2 [12] with an additional 1%–2% TPE contribu-
tion needed to fully resolve the discrepancy at larger
Q2 [45,46].
Our results agree with the hadronic TPE calculations

[26,45]. Our data points plus the previous ε ¼ 0 point [47]
prefer the hadronic TPE calculation [26] by 2.5σ over the
no-TPE (R0 ¼ 1) hypothesis. A calculation of TPE effects
on a structureless point proton [12] is disfavored by 5σ.
To show the effect of our measurements on a single

GE=GM point, we corrected the CLAS TPE cross section
ratios at Q2 ¼ 1.45 GeV2 for the charge-even radiative
correction [see Eq. (2)] to determine the correction
factor 1þ δ2γ. We fit this to a linear function of ε and
used this to correct the reduced electron scattering
cross sections measured at Q2 ¼ 1.75 GeV2 [3]: σcorrR ðεÞ ¼
σRðεÞ½1þ δ2γðεÞ&: The TPE corrections change μpGE=GM
obtained from the unpolarized data from 0.910' 0.060 to

0.816' 0.076, bringing it into agreement with the polar-
ized electron scattering result of 0.789' 0.042 [9].
In conclusion, we have measured the ratio of eþp=e−p

elastic scattering cross sections over a wide range ofQ2 and
ε using an innovative simultaneous tertiary eþe− beam,
detecting the scattered particles in the CLAS spectrometer.
The results are much more precise than previous measure-
ments. Our measurements support hadronic TPE calcula-
tions which resolve the proton form factor discrepancy
between polarized and unpolarized electron scattering
measurements up to Q2 < 2–3 GeV2 [12,45]. Future mea-
surements or improved calculations will be necessary to
extend this up to Q2 ¼ 6 GeV2 where the discrepancy is
greatest. Verifying the hadronic structure corrections asso-
ciated with TPE is vital, as such corrections will apply to
many other observables [27,34,48–50] where direct TPE
measurements are not feasible.
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FIG. 3 (color online). Ratio of eþp=e−p cross sections cor-
rected for δbrem as a function of ε atQ2 ¼ 1.45 GeV2 (top) and as
a function of Q2 at ε ¼ 0.88 (bottom). The filled blue circles
show the results of this measurement. The inner error bars are the
statistical uncertainties and the outer error bars are the statistical,
systematic, and radiative-correction uncertainties added in quad-
rature. The black dotted line at R0 ¼ 1 is the limit of no TPE. The
almost-identical nucleon-only hadronic calculations are shown
by the short-dashed black (Blunden et al. [26]) and solid magenta
curves (Zhou and Yang [45]). The long-dashed red curve shows
the calculation including N þ Δ intermediate states [45]. The
cyan dot-dashed curve shows the calculation of TPE effects
on a structureless point proton [12]. The open green circles
show the previous world data at Q2 ≥ 1 GeV2 (top) and
ε ≥ 0.8 (bottom) [34].
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Q²=1.45 GeV²

ε =0.88

CLAS collaboration (2015)

Table II provides the experimental results: the values of
R2γ with the total statistical and systematic uncertainties.
These results are obtained assuming that R2γ is equal to
unity at the normalization points (RLNP

2γ ¼ 1). Also listed
are the kinematic parameters of the measurement, the Δϕ,
Δθ, and ΔE cuts, the raw ratios R, and the quantities
Nþ

sim=N
0
sim and N−

sim=N
0
sim obtained in the GEANT4 simu-

lation and needed to extract R2γ [19].
Figure 2 compares our results with some of the existing

experimental data [23–25,27] and several theoretical or
phenomenological predictions [37–42]. Only those of the
old data points which approximately correspond to our
kinematics, defined in Fig. 2 by the beam energy and ε
values, are shown. It can be seen that our results are in
agreement with the previous measurements, but signifi-
cantly more precise. The figure also shows that the
hadronic calculations, Refs. [37,38], are in good agreement
with the data of run I, but overestimate the values of R2γ

obtained in run II. In contrast, the phenomenological fit
[39] underestimates R2γ at all the measured points. Note
that this fit has been corrected by us to switch from the
Maximon–Tjon prescription [21] for the soft TPE terms,
used in Ref. [39], to the Mo–Tsai prescription [20], used by
us (see Ref. [19] for details). It should be emphasized that
the models [37–39] resolve the form factor discrepancy at
high Q2 values by taking into account the hard TPE effect.
The other three predictions [40–42] are worse in overall
agreement with our data.
Our results can also be renormalized according to the

tested model. In this case, the values of R2γ at the points
No.1–No.4 should be multiplied by the corresponding
values of RLNP

2γ predicted by the model. This is illustrated
in Table III, where the normalization coefficients for each
of the predictions [37–42] are given. Also shown are the

chi-square values per degree of freedom, χ2=nd:f., character-
izing the agreement between the prediction and the data.
The second and the third columns correspond to the
normalization to unity, while the next three columns
correspond to the normalization in accordance with the
predictions. The last row of Table III refers to the case of
the hard TPE contribution being zero. It can be seen that
this case is not consistent with our data. Note also that the
fit [39] has a large change in the chi-square value with the
change in normalization, showing a very good agreement in
the case of normalization to the predicted values of RLNP

2γ .
The conclusion that the predictions [37–39] seem the

most plausible remains valid regardless of the normaliza-
tion used. Nevertheless, an accurate normalization of our
data is desired and can be achieved later if new precise
measurements or reliable calculations of the hard TPE
effect at Q2 ≈ 0.1 GeV2 become available.

FIG. 2 (color online). Experimental data (points) and some predictions (curves) for the ratio R2γ as a function of ε or Q2. The left and
right panels correspond, respectively, to run I and run II. Data points: open square [23], closed inverted triangle [24], closed diamond
[25], closed triangle [27], and closed circle—this experiment. Error bars of our points (closed circles) are related to the statistical
uncertainties; the shaded bands show the total systematic uncertainty and the bin size for each data point. The curves are from Ref. [37]
(cyan dash-dotted line), [38] (red thin solid line), [39] (blue thick solid line), [40] (gray long-dashed line), [41] (magenta short-dashed
line), and [42] (black dotted line).

TABLE III. Comparison of our results with predictions.

RLNP
2γ

RLNP
2γ ðχ2=nd:f.Þ Run I Run II ðχ2=nd:f.Þ

Borisyuk and
Kobushkin [37]

1 2.14 0.9979 0.9972 3.80

Blunden et al. [38] 1 2.94 0.9980 0.9974 4.75
Bernauer et al. [39] 1 4.19 0.9969 0.9946 1.00
Tomasi-Gustafsson
et al. [40]

1 5.09 1.0007 1.0014 5.97

Arrington and
Sick [41]

1 7.72 0.9995 0.9996 8.18

Qattan et al. [42] 1 25.0 1.0005 1.0018 22.0
No hard TPE
(R2γ ≡ 1)

1 7.97 1 1 7.97
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Table II provides the experimental results: the values of
R2γ with the total statistical and systematic uncertainties.
These results are obtained assuming that R2γ is equal to
unity at the normalization points (RLNP

2γ ¼ 1). Also listed
are the kinematic parameters of the measurement, the Δϕ,
Δθ, and ΔE cuts, the raw ratios R, and the quantities
Nþ

sim=N
0
sim and N−

sim=N
0
sim obtained in the GEANT4 simu-

lation and needed to extract R2γ [19].
Figure 2 compares our results with some of the existing

experimental data [23–25,27] and several theoretical or
phenomenological predictions [37–42]. Only those of the
old data points which approximately correspond to our
kinematics, defined in Fig. 2 by the beam energy and ε
values, are shown. It can be seen that our results are in
agreement with the previous measurements, but signifi-
cantly more precise. The figure also shows that the
hadronic calculations, Refs. [37,38], are in good agreement
with the data of run I, but overestimate the values of R2γ

obtained in run II. In contrast, the phenomenological fit
[39] underestimates R2γ at all the measured points. Note
that this fit has been corrected by us to switch from the
Maximon–Tjon prescription [21] for the soft TPE terms,
used in Ref. [39], to the Mo–Tsai prescription [20], used by
us (see Ref. [19] for details). It should be emphasized that
the models [37–39] resolve the form factor discrepancy at
high Q2 values by taking into account the hard TPE effect.
The other three predictions [40–42] are worse in overall
agreement with our data.
Our results can also be renormalized according to the

tested model. In this case, the values of R2γ at the points
No.1–No.4 should be multiplied by the corresponding
values of RLNP

2γ predicted by the model. This is illustrated
in Table III, where the normalization coefficients for each
of the predictions [37–42] are given. Also shown are the

chi-square values per degree of freedom, χ2=nd:f., character-
izing the agreement between the prediction and the data.
The second and the third columns correspond to the
normalization to unity, while the next three columns
correspond to the normalization in accordance with the
predictions. The last row of Table III refers to the case of
the hard TPE contribution being zero. It can be seen that
this case is not consistent with our data. Note also that the
fit [39] has a large change in the chi-square value with the
change in normalization, showing a very good agreement in
the case of normalization to the predicted values of RLNP

2γ .
The conclusion that the predictions [37–39] seem the

most plausible remains valid regardless of the normaliza-
tion used. Nevertheless, an accurate normalization of our
data is desired and can be achieved later if new precise
measurements or reliable calculations of the hard TPE
effect at Q2 ≈ 0.1 GeV2 become available.

FIG. 2 (color online). Experimental data (points) and some predictions (curves) for the ratio R2γ as a function of ε or Q2. The left and
right panels correspond, respectively, to run I and run II. Data points: open square [23], closed inverted triangle [24], closed diamond
[25], closed triangle [27], and closed circle—this experiment. Error bars of our points (closed circles) are related to the statistical
uncertainties; the shaded bands show the total systematic uncertainty and the bin size for each data point. The curves are from Ref. [37]
(cyan dash-dotted line), [38] (red thin solid line), [39] (blue thick solid line), [40] (gray long-dashed line), [41] (magenta short-dashed
line), and [42] (black dotted line).

TABLE III. Comparison of our results with predictions.

RLNP
2γ

RLNP
2γ ðχ2=nd:f.Þ Run I Run II ðχ2=nd:f.Þ

Borisyuk and
Kobushkin [37]

1 2.14 0.9979 0.9972 3.80

Blunden et al. [38] 1 2.94 0.9980 0.9974 4.75
Bernauer et al. [39] 1 4.19 0.9969 0.9946 1.00
Tomasi-Gustafsson
et al. [40]

1 5.09 1.0007 1.0014 5.97

Arrington and
Sick [41]

1 7.72 0.9995 0.9996 8.18

Qattan et al. [42] 1 25.0 1.0005 1.0018 22.0
No hard TPE
(R2γ ≡ 1)

1 7.97 1 1 7.97
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TPE using dispersion relations
(Borisyuk & Kobushkin, Phys. Rev. C 78, 2008)

•Imaginary part determined by 
unitarity
•Only on-shell form factors
•Real part determined from 
dispersion relations
•For elastic (N) intermediate state, 
numerical differences between 
one loop (solid) and dispersion 
(dashed) analyses are tiny (all due 
to (F₂ × F₂) term in box vertices

�
dk�� �

h
x

PGB

B&K

See also recent work by Tomalak & Vanderhaeghen, Eur. Phys. J. A. (2015) 51: 24

2 Im
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FIG. 8. (Color online) !2γ [Eq. (14)] given by the resonance
P33 contribution only. Calculations are done for the P33[SU(6)] and
P33(full) models. The values of Q2 are in units of GeV2.

also a qualitative agreement with predictions of the Borisyuk
and Kobushkin model [13]. In both approaches the TPE !(P33)
correction is positive in the low and intermediate Q2 range and
it reduces the total TPE correction.

In contrast to !2γ (N ), the function !2γ (P33) depends on
the details of the hadronic model. Indeed, there are small but
noticeable differences between the predictions of KBMT05
and the P33(full) model. To illustrate the model dependence
of !2γ (P33) the predictions of the TPE correction obtained
within P33[SU(6)] and P33(full) models are plotted in Fig. 8.
There is a clear discrepancy between predictions of the two
approaches.

V. NEURAL NETWORK VERSUS HADRONIC MODEL

The electromagnetic FFs of the proton are the input of
the hadronic model used in this paper. For comparison of the
self-consistency the proton FFs of HM are obtained from the
fit of the HM to the same unpolarized cross-section data as in
the BNN (for details see Appendix B). The PT and R+/− data
are not taken into consideration, and the constraint coming
from assumption (A) does not affect the results. The TPE
correction contains either !(N ) or !(N + P33) contributions.
The obtained FF parameters are given in Tables I (fit I) and

TABLE I. Form factor parameters for fit I (56) for the hadronic
model with elastic (N ) (left panel) and elastic and resonance P33

(right panel) TPE contributions. Mass parameters are in the units of
GeV2.

k = 1 k = 2 k = 1 k = 2

mk
1 1.234 0.321 mk

1 1.221 0.327
mk

2 0.181 4.298 mk
2 0.173 4.019

mk
3 1.085 4.641 mk

3 1.097 4.450
f k

1 −6.569 0.694 f k
1 −7.934 0.713

f k
2 0.055 −13.44 f k

2 0.051 −10.16

II (fit II), while the values of χ2
min/NDF (where NDF is the

number of degrees of freedom) are reported in Table III.
It is interesting to notice that the mass parameters of fit

I are not well spaced. For instance, the parameters m1
1 and

m1
3 take quite similar values. The same feature characterizes

the fits from Ref. [7], where parametrization I was also
discussed but it was fitted to the FFs from Ref. [60]. Indeed,
this parametrization at large Q2 behaves as 1/Q2, while it
is expected (based on theoretical arguments [61,62]) that
GE,M ∼ 1/Q4.

The above observations may suggest that parametrization
I is too simple to describe accurately the FFs over a wide
Q2 range. In order to verify this statement we make two
fits. In the first we consider the data below Q2 = 1 GeV2,
while in the other we use the data below Q2 = 0.5 GeV2.
For the first case we get the mass parameters m1

1 = 2.59,
m1

2 = 0.95, and m1
3 = 0.18 and for the other we get m1

1 = 1.70,
m1

2 = 0.21, and m1
3 = 9.16. We see that for low-Q2 data fits

the mass parameters are well separated. However, because
of the problems noted above, in further discussion the HM
with the FFs given by fit I is treated as a toy model, discussed
to present the systematic properties of the hadronic approach.

At low Q2 there is a visible discrepancy between the
BNN and the hadronic model FF fits. This is illustrated in
Fig. 9, where the ratio µpGE/GM is plotted. There is a
satisfactory agreement between fits I and II. In contrast, the
ratio µpGE/GM predicted by the BNN approach is more
consistent with the recent PT measurements [54] (whose data
were not included in the BNN fit).

The low-Q2 discrepancy between the HM and BNN
approaches is the result of different treatments of the TPE
corrections. This is illustrated in Fig. 5, where we plot the
function

D2γ = !2γ

1 + !2γ

= !C2γ

σR,1γ+2γ

. (65)

It can be seen that the BNN and HM predictions are
inconsistent for Q2 ∈ (0.02,1) GeV2. In contrast, below Q2 <
0.02 GeV2 and at low ε there is a good agreement between
TPE predictions obtained within the two methodologies as well
as other theoretical calculations [63]. This low-ε and low-Q2

behavior of the BNN fit seems to be a systematic property of
all BNN-based parametrizations. This is illustrated in Fig. 10,
where the R+/− values predicted by the BNN models, rejected
due to too small values of the evidence (see Table V), are
plotted. In the limit of ε → 0, with Q2 very low but fixed, σR,1γ

TABLE II. Form factor parameters for the II (57) for the hadronic
model with elastic (N ) (left panel) and elastic and resonance P33 (right
panel) TPE contributions. Mass parameters are in the units of GeV.

k = 1 k = 2 k = 1 k = 2

mk
1 0.7732 1.0595 mk

1 0.7866 1.0247
mk

2 0.9489 1.5629 mk
2 0.9641 1.4914

mk
3 0.8457 0.5474 mk

3 0.8550 0.5082
f k

1 3.9833 1.2645 f k
1 4.3360 1.4592

f k
2 3.9334 −0.269 f k

2 3.7328 −0.3175
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FIG. 6. (Color online) Predictions of D2γ [Eq. (65)] based on the BNN and HM (fits I and II) as well as ABGG approaches for Q2 > 2.
The TPE correction includes either elastic (N ) or elastic and P33 resonance (full-model) contributions. The values of Q2 are in units of GeV2.
The shaded areas show 1σ error computed from the covariance matrix.

In this case we parametrize the CV
3 (Q2) form factor as

follows [57]:

CV
3 (Q2) = 2.05

(
1 + Q2

0.54 GeV2

)2 . (62)

(ii) P33(full) model: We apply the form factors from
Ref. [58], namely,

CV
i (Q2) = cV

i

(
1 + Q2

aiM
2
V

)−1

GD(Q2), (63)

where a3 = a4 = 4, a5 = 0.776, cV
3 = 2.13, cV

4 =
−1.51, cV

5 = 0.48, and

GD(Q2) =
(

1 + Q2

M2
V

)−2

, with MV = 0.84 GeV.

(64)

Over a wide Q2 range (for Q2 > 0.1 GeV2) the form factors
given by Eq. (63) take values similar to the MAID07 form
factors [59].

The P33(full) model is different from the one applied by
Kondratyuk et al. [9] (denoted as KBMT05). However, in the

intermediate Q2 range the predictions are comparable (as seen
by comparing our Fig. 7 with Fig. 2 from Ref. [9]). We notice

ε
0 0.2 0.4 0.6 0.8 1

γ2∆

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

=1, N2Q

33
=1, N+P2Q

=3, N2Q

33
=3, N+P2Q

FIG. 7. (Color online) #2γ [Eq. (14)] computed for either !(N )
or !(N + P33) TPE contributions. The form factors from Ref. [7] are
applied. The inelastic TPE correction, given by !(P33), is computed
within the P33(full) model. The values of Q2 are in units of GeV2.
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1.TPE extracted from data 
using Bayesian analysis

2.Use model fit that includes 
N and Δ
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TABLE III. χ 2
min/NDF values.

FF (N ) (N + P33)

fit I 389/403 397/403
fit II 386/403 395/403

[Eq. (10)] is dominated by the magnetic contribution, and the
main constraint comes from the fact that GM (Q2 = 0) = µp.
As a result the TPE fit is affected by several data points present
in the low-Q2 and low-ε domain.

For completeness of the low-Q2 comparison we report the
values of the proton radius obtained from the BNN and HM
fits in Table IV.

The value of
√
〈r2

E〉 computed from the BNN fit is con-
sistent with fit II and the recent atomic measurement [43]
[0.84087(39) fm]. However, it disagrees with the prediction
based on fit I. The latter is inconsistent with fit II as well.

There are two major reasons for the above inconsistency.
The first one is induced by the systematic differences between
the predictions of the TPE by the BNN and HM approaches
in the low-Q2 range. The discrepancy between the values of the
proton radius based on fits I and II is the result of the problem
of parametrization I (mentioned already above) with the proper
description of the FFs over a wide Q2 range. In general, the
low number of parameters in fits I and II limits the flexibility
of the FF parametrizations and their ability for simultaneous
description of the low- and high-Q2 data. Therefore the low-
and high-Q2 fit dependence can be affected by the high- and
low-Q2 data.

To summarize the low-Q2 discussion we would like to
emphasize that in both the present and the BNN data analyses

)2 (GeV2Q
0 0.2 0.4 0.6 0.8 1

M
/G

E
G pµ

0.7

0.8

0.9

1

1.1

BNN

, fit I33N+P

, fit II33N+P

<12fit II, N, Q

FIG. 9. (Color online) The ratio µpGE/GM calculated based on
fits I and II (N and resonance P33 contributions) as well as the
BNN fit. Additionally, the ratio µpGE/GM obtained based on the
fit (parametrization II) to the unpolarized cross-section data below
Q2 = 1 GeV2 is also plotted. The PT data (points with error bars)
are taken from Ref. [53] and Zhan et al. [54] (open diamonds). The
shaded areas show 1σ error computed from the covariance matrix.

TABLE IV. Values of the proton radius
√

〈r2
E〉 obtained from the

BNN and HM fits in femtometers.

BNN fit I fit II

0.85 ± 0.01 0.898 ± 0.001 0.867 ± 0.002

our attention was not particularly focused on the Q2 → 0 limit.
Certainly, accurate calculations of the proton radius require
more careful discussion, as is reported in Refs. [54,64–68].

Above Q2 = 1 GeV2 the BNN FF ratio µpGE/GM ,
on the qualitative level, is comparable with the hadronic
model predictions (Fig. 11). All fits agree well with the PT
measurements [53]. As could be expected, the inclusion of
the !(P33) contribution into the hadronic model increases the
value of the electric form factor at larger values of Q2 (see
Fig. 11).

Excellent consistency between predictions of the TPE effect
by the BNN and HM approaches appears for Q2 ∈ (1,3) GeV2

(see Figs. 10 as well as 5 and 6). Above Q2 = 3 GeV2 the
agreement is at the 2σ level only.

In order to show the strength of the BNN approach we
confront its predictions of the TPE effect with our previous
global analysis (ABGG) [29] made in the conventional way
(see Figs. 5, 6, and 10). In this approach, following the
proposal of Ref. [28], some functional form of the TPE term
was postulated. But the same cross-section and PT data as in
the case of the BNN were analyzed. The constraint (A) was
also imposed. Although both the electric and the magnetic
FF fits of the ABGG analysis are very similar to those
obtained within the BNN and the other phenomenological
approaches [34], the predictions of the TPE correction agree
with the HM only for Q2 around 3 GeV2 (see Fig. 10). In
the ABGG approach the model dependence of the final fits
was not discussed. The successful fits were characterized
by a reasonable value of χ2

min/NDF. However, in the BNN
analysis the models rejected, due to too low evidence, were
characterized also by a reasonable χ2

min/NDF (see Table V).
But the TPE corrections predicted based on these fits, similarly
to those for the ABGG analysis, are inconsistent with the best
BNN fit and the hadronic model calculations.

The results of our paper are complementary to the conclu-
sions of Ref. [27] (AMT), where a global analysis of the world
ep data was also performed. The TPE correction was given
by the sum of elastic !(N ) and inelastic contributions. The
latter was described by a phenomenological function, which

TABLE V. The minimum of χ 2 and the maximum of the evidence
obtained for the best BNN model (in bold) and the fits rejected because
of too small values of the evidence. The total number of points in the
fit is 529.

N4,2 N4,3 N6,2 N6,3 N6,4 N5,7 N5,6

χ 2
min 507 511 497 493 486 539 478

ln(evidence) −633 −630 −635 −624 −639 −699 −611
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Further calculations for different kinematics and assump-
tions are not directly comparable [36–39].

3. Application to cross sections

We apply our calculated corrections to the electron-
proton scattering data with the highest quoted precision
at low Q2. The corresponding measurements have been
carried out at the Mainz Microtron (MAMI) for six
different energies of the incoming electron beam with
three spectrometers by the A1 Collaboration [2,3]. We
display the cross sections with an offset for these six energy
settings in Fig. 5 depending on the scattering angle θ.
The original data contains an approximation of the two-
photon correction that is only valid in the limit Q2 → 0,
which even has the wrong sign for some kinematical
regions, as shown by Arrington [40]. This approximation
is given in the simple form

δF ¼ Zαπ
sin θ

2 − sin2 θ
2

cos2 θ
2

ð22Þ

by Feshbach and Kinley [41]. We subtract this and replace
it by our calculations. For the nucleon intermediate state,
we have seen that the dependence on the nucleon form
factors is small at low Q2 and thus we use a simple pole fit
for the nucleon form factors in these calculations. For the
correction from the Δ intermediate state we employ here
the γNΔ vertex from Eq. (6) with recent values on the
photocouplings g1 ¼ 6.59; g2 ¼ 9.08; g3 ¼ 7.12. This
serves here as an upper limit for the correction compared
to the calculation based on the helicity amplitudes. Since in
this case the dependence on the NFFs in the 1γ amplitude is
also significant (see Fig. 4), we use those from a previous
dispersion relation fit here.
Besides the original MAMI cross sections, we show

in Fig. 5 the same data corrected by our nucleon-TPE

calculation (red, þ) and the nucleonþ Δ-TPE calculation
(black, x). Here, we omit the error bars to show the
corrections more clearly. Q2 remains below 1 GeV2 for
the shown MAMI data. Besides the last MAMI data set
with the highest precision, we partly include in the
following analysis former world data on electron-proton
scattering. First, this serves as a consistency check, and,
second, for an evaluation of the proton structure depend-
ence of the third Zemach moment (see below), a larger
data range is needed. Care has been taken about the
treatment of the IR divergences. The MAMI data set
contains the IR-approximation by Maximon and Tjon,
the world data compilation by I. Sick [42] contains the
one by Mo and Tsai.

III. THEORETICALLY CONSTRAINED
FIT FUNCTIONS

In this section, we introduce the relevant analytic
structure of the nucleon form factors and the known
information on the spectral function. We point out two
distinct procedures based on analyticity and unitarity to
constrain the FFs via the physical and unphysical region of
timelike momentum transfer (see Fig. 6). We show which
input has the largest impact on the FFs in the spacelike
region. Based on this reasoning, we provide the FF para-
metrizations used in this work.

A. Analytic structure and spectral decomposition
of the form factors

For timelike momentum transfer, the NFFs are defined
via the matrix element

Iμ ¼ hNðpÞN̄ðp̄Þjjemμ ð0Þj0i

¼ ūðpÞ
!
γμF1ðtÞ þ i

σμνqν

2mN
F2ðtÞ

"
vðp̄Þ: ð23Þ
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FIG. 4 (color online). Dependence of the TPE with Δ intermediate state on the nucleon form factors atQ2 ¼ 3 GeV2. Left panel: NΔγ
vertex as given by Kondratyuk. Right panel: NΔγ vertex directly matched to helicity amplitudes from electroproduction of nucleon
resonances.

THEORETICAL CONSTRAINTS AND SYSTEMATIC … PHYSICAL REVIEW D 91, 014023 (2015)

014023-7

Lorenz et al., Phys. Rev. D 91, 014023 (2015)

•Used γNΔ form factors fit to recent data

• Find smaller results than Kondratyuk & PGB
• (consistent with softer form factor Λ=0.75 GeV than for nucleon)

•Claim substantial effect on the determination of the 
proton charge radius from scattering data
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FIG. 3: δ∆ vs. ε at Q2 = 3 GeV2. The vertical (blue) dashed lines correspond to a value of

ε = 0.904 above which the predictions of our hadronic model could be questionable. See text

for explanation. (a) With ∆ form factors of Eq. (13) and coupling parameters g1 = 7, g2 = 9.

The (red) dotted and (black) solid curves correspond to g3 = 0 and g3 = ±2, respectively, using

vertex relation of Eq. (9). (Green) dashed and (olive) dash-doted curves correspond to g3 = -2

and 2, obtained with the correct vertex relation of Eq. (8). (b) Dependence of δ∆ on ε with

the use of correct vertex function but different coupling constants and form factors. The (red)

dotted and (olive) dash-doted curves, labelled by KBMT correspond to g1 = 7, g2 = 9, g3 = 0

and g1 = 6.59, g2 = 9.06, g3 = 7.16, respectively, both with the ∆ form factors of Eq. (13)

employed in [15]. The (blue) dashed and (black) solid curves, labelled by ZY, correspond to

g1 = 7, g2 = 9, g3 = 0 and g1 = 6.59, g2 = 9.06, g3 = 7.16 with the realistic ∆ form factors of Eq.

(14).

obtained with the realistic ∆ form factors Eq. (14), correspond to (g1 = 7, g2 = 9, g3 = 0)

and (g1 = 6.59, g2 = 9.06, g3 = 7.16), respectively. The large differences between (red)

dotted and (black) solid curves, and (green) dash-dotted and (blue) dashed curves, are

attributed to the different form factors used. However, one notes that the (black) solid

and (blue) dashed curves are very close to each other which implies that once the realistic

form factors are employed, the effect of Coulomb quadrupole coupling is greatly reduced.

Hereafter, all the results to be given are obtained with the use of correct γN∆ vertex

function, realistic form factors, and coupling constants, unless otherwise specified.

Recently, it has been assumed in [21] that for s = (p1 + p2)2 → ∞ (Regge limit),

Zhou and Yang, arXiv: 1407.2711 (2015)

5

γ γ

P (p2) P ′(p4)

(a)

e(p1) e′(p3)

N,∆

k

(b)
N,∆

FIG. 1: Two-photon exchange diagrams with ∆ excitation for elastic ep scattering.

amplitude for the box diagram in Fig. 1(a) is given as,

M (a,∆) = −i

∫

d4k

(2π)4
u(p3)(−ieγµ)

i(p/1 + p/2 − k/)

(p1 + p2 − k)2 −m2
e + iε

(−ieγν)u(p1)
−i

(p4 − k)2 + iε

×
−i

(k − p2)2 + iε
u(p4)Γ

µα
γ∆→N(k, p4 − k)

−i(k/+M∆)P
3/2
αβ (k)

k2 −M2
∆ + iε

Γνβ
γN→∆(k, k − p2)u(p2),

(4)

where

P 3/2
αβ (k) = gαβ −

γαγβ
3

−
(k/γαkβ + kαγβk/)

3k2
, (5)

is the spin-3/2 projector. Amplitude for the cross-box diagram Fig. 1(b) M (b,∆) can be

written down in similar manner. The amplitude in Eq. (4) is IR finite because when

the four-momentum of the photon approaches zero, the γN∆ vertex functions Γ′s also

approaches zero. Therefore we do not have to include an infinitesimal photon mass in the

photon propagators to regulate the IR divergence in Eq. (4). The vertex functions Γ′s

for γ∆ → N and γN → ∆ are defined by

u(p+ q)Γµα
γ∆→N(p, q)u

∆
α (p) = −ie〈N(p + q)|Jµ

EM |∆(p)〉, (6)

u∆
β (p)Γ

νβ
γN→∆(p, q)u(p− q) = −ie〈∆(p)|Jν

EM |N(p− q)〉, (7)

where the q′s in both Γµα
γ∆→N(p, q) and Γβν

γN→∆ refer to the incoming momentum of the

photon, as in [15].

We now elaborate, in the followings, on the three improvements over the previous

calculations we will carry out in this study.

Include all 3 multipoles, with form factors fit to recent 
CLAS data
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Resonance (Δ) contribution:
 γ(qα) + Δ(pµ) → N

pµ!

qα+

3 coupling constants g1, g2, and g3
At Δ pole:	
 g1  	
 Magnetic (dominant contribution)
	
 	
 g2-g1  	
 Electric
	
       	
 g3 	
 Coulomb

γNΔ vertex



Dispersion method
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dispersion relation

imaginary part given by

νth extends into the unphysical region (ε<0)

• For dipole form factors, 2D integral can be done 
analytically; expressible in terms of elementary functions.

• Can also be done numerically for more general form 
factor parametrizations
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FIG. 8. (Color online) !2γ [Eq. (14)] given by the resonance
P33 contribution only. Calculations are done for the P33[SU(6)] and
P33(full) models. The values of Q2 are in units of GeV2.

also a qualitative agreement with predictions of the Borisyuk
and Kobushkin model [13]. In both approaches the TPE !(P33)
correction is positive in the low and intermediate Q2 range and
it reduces the total TPE correction.

In contrast to !2γ (N ), the function !2γ (P33) depends on
the details of the hadronic model. Indeed, there are small but
noticeable differences between the predictions of KBMT05
and the P33(full) model. To illustrate the model dependence
of !2γ (P33) the predictions of the TPE correction obtained
within P33[SU(6)] and P33(full) models are plotted in Fig. 8.
There is a clear discrepancy between predictions of the two
approaches.

V. NEURAL NETWORK VERSUS HADRONIC MODEL

The electromagnetic FFs of the proton are the input of
the hadronic model used in this paper. For comparison of the
self-consistency the proton FFs of HM are obtained from the
fit of the HM to the same unpolarized cross-section data as in
the BNN (for details see Appendix B). The PT and R+/− data
are not taken into consideration, and the constraint coming
from assumption (A) does not affect the results. The TPE
correction contains either !(N ) or !(N + P33) contributions.
The obtained FF parameters are given in Tables I (fit I) and

TABLE I. Form factor parameters for fit I (56) for the hadronic
model with elastic (N ) (left panel) and elastic and resonance P33

(right panel) TPE contributions. Mass parameters are in the units of
GeV2.

k = 1 k = 2 k = 1 k = 2

mk
1 1.234 0.321 mk

1 1.221 0.327
mk

2 0.181 4.298 mk
2 0.173 4.019

mk
3 1.085 4.641 mk

3 1.097 4.450
f k

1 −6.569 0.694 f k
1 −7.934 0.713

f k
2 0.055 −13.44 f k

2 0.051 −10.16

II (fit II), while the values of χ2
min/NDF (where NDF is the

number of degrees of freedom) are reported in Table III.
It is interesting to notice that the mass parameters of fit

I are not well spaced. For instance, the parameters m1
1 and

m1
3 take quite similar values. The same feature characterizes

the fits from Ref. [7], where parametrization I was also
discussed but it was fitted to the FFs from Ref. [60]. Indeed,
this parametrization at large Q2 behaves as 1/Q2, while it
is expected (based on theoretical arguments [61,62]) that
GE,M ∼ 1/Q4.

The above observations may suggest that parametrization
I is too simple to describe accurately the FFs over a wide
Q2 range. In order to verify this statement we make two
fits. In the first we consider the data below Q2 = 1 GeV2,
while in the other we use the data below Q2 = 0.5 GeV2.
For the first case we get the mass parameters m1

1 = 2.59,
m1

2 = 0.95, and m1
3 = 0.18 and for the other we get m1

1 = 1.70,
m1

2 = 0.21, and m1
3 = 9.16. We see that for low-Q2 data fits

the mass parameters are well separated. However, because
of the problems noted above, in further discussion the HM
with the FFs given by fit I is treated as a toy model, discussed
to present the systematic properties of the hadronic approach.

At low Q2 there is a visible discrepancy between the
BNN and the hadronic model FF fits. This is illustrated in
Fig. 9, where the ratio µpGE/GM is plotted. There is a
satisfactory agreement between fits I and II. In contrast, the
ratio µpGE/GM predicted by the BNN approach is more
consistent with the recent PT measurements [54] (whose data
were not included in the BNN fit).

The low-Q2 discrepancy between the HM and BNN
approaches is the result of different treatments of the TPE
corrections. This is illustrated in Fig. 5, where we plot the
function

D2γ = !2γ

1 + !2γ

= !C2γ

σR,1γ+2γ

. (65)

It can be seen that the BNN and HM predictions are
inconsistent for Q2 ∈ (0.02,1) GeV2. In contrast, below Q2 <
0.02 GeV2 and at low ε there is a good agreement between
TPE predictions obtained within the two methodologies as well
as other theoretical calculations [63]. This low-ε and low-Q2

behavior of the BNN fit seems to be a systematic property of
all BNN-based parametrizations. This is illustrated in Fig. 10,
where the R+/− values predicted by the BNN models, rejected
due to too small values of the evidence (see Table V), are
plotted. In the limit of ε → 0, with Q2 very low but fixed, σR,1γ

TABLE II. Form factor parameters for the II (57) for the hadronic
model with elastic (N ) (left panel) and elastic and resonance P33 (right
panel) TPE contributions. Mass parameters are in the units of GeV.

k = 1 k = 2 k = 1 k = 2

mk
1 0.7732 1.0595 mk

1 0.7866 1.0247
mk

2 0.9489 1.5629 mk
2 0.9641 1.4914

mk
3 0.8457 0.5474 mk

3 0.8550 0.5082
f k

1 3.9833 1.2645 f k
1 4.3360 1.4592

f k
2 3.9334 −0.269 f k

2 3.7328 −0.3175
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     loop calculationPGB: dispersive calculation

Both techniques agree reasonably well at
low ε (small E), but only the dispersive method 
gives a vanishing contribution as ε → 1.
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Figure 3: Comparison with GEp2γ experiment [10].
Dashed lines: R|ε=1 fixed, solid lines: R|ε=1 fitted.
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Figure 4: Full TPE correction to measured proton form
factor ratio at high Q2, fixed ε = 0.5.
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Figure 5: TPE contributions of different channels compared, fixed Q2 as indicated on the plots.
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Borisyuk & Kobushkin, arXiv:1506.02682 (2015)

• Include other spin 1/2 and 3/2
resonances using MAID 
helicity amplitudes

• Include a finite width
•Contributions tend to cancel, 
in qualitative agreement with 
Kondratyuk & Blunden result
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cannot appear in the final result, and one should expect
this logarithmic dependence on the electron mass to van-
ish. I will be looking for the leading t-behavior that is
expected to be ∼ t ln t, and that behavior can only come
from the integral I1. I will keep the integral I2 to cancel
the lnm2

e dependence but neglect terms ∼ t.
The spin-averaged part of the hadronic tensor with real

photons in general (non-forward) kinematics is expressed
in terms of two scalar amplitudes f1,2(P · q1, t) [20]

Wµν = f1
�
(q1 · q2)gµν − qν1 q

µ
2

�
(28)

+ f2
�
(P · q1)2gµν + (q1 · q2)PµP ν

−(P · q1)(Pµqν1 + P νqµ2 )
�
.

Making use of the relation

ū(k�)k/1u(k) =
t (P ·k1)
(P ·K) − q21 − q22

4(P ·K)
ū(k�)P/u(k), (29)

performing tensor contraction and consistently neglect-
ing terms ∼ tq21,2 and ∼ q21q

2
2 in the numerator, the imag-

inary part of the TPE amplitude can be cast in the form

ImT2γ = e4ū(k�)P/u(k)

�
d3�k1

(2π)32E1

1

q21q
2
2

(30)

× (P ·K)2 + (P · k1)2

2(P ·K)

�
t
(P · k1)
(P ·K)

− q21 − q22

�
Imf2,

while the amplitude f1 does not contribute at the leading
logarithm accuracy. According to the power counting
used throughout this calculation, Im f2(P · q1, t, q21 , q22)
should be taken at t = q21 = q22 = 0. In these kinematics,
the optical theorem relates this imaginary part to the
total real photoabsorption cross section σT as

Imf2(P · q1, 0, 0, 0) = −2σT /[(P · q1)e2]. (31)

Using the definition of Eq. (14) and identifying the
solid angle integrals in Eq. (30) with the previously in-
troduced I1,2 in Eq. (27), one can express the leading
logarithm contribution to the imaginary part of the elas-
tic ep-scattering amplitude near the forward direction as

ImΦ =
−t

4π2

E�

Eπ

dω

ω
σT (ω) ln

�
4ω2

cm

−t

��
1− ω

E
+

ω2

2E2

�
,(32)

with ω = (W 2 −M2)/2M the LAB real photon energy,
and ωcm = Mω/

√
s the c.m. photon energy. The disper-

sion integral starts from the pion threshold,

ReΦ(E, t) =
2E

π
P
� ∞

Eπ

dE�

E�2 − E2
ImΦ(E�, t). (33)

The principal value integral can be done analytically
by changing the order of integration, and I obtain,

ReΦ(E, t) =
−t

4π3

� ∞

Eπ

dω

ω
σT (ω) ln

�
4ω2

cm

−t

�
(34)

×
��

1 +
ω2

2E2

�
ln

����
E + ω

E − ω

����+
ω

E
ln

����1−
E2

ω2

����−
ω

E

�
.

This is the master formula that is a more general result
than that of Ref. [21] where the high energy approxima-
tion for the cross section was made.
The integral of Eq. (34) can be evaluated numerically

using the phenomenological fit [22] of the world data on
real photoabsorption on the proton target [23]. In Figs.
2, 3, 4, I present results for the quantity

δσTPE
R /|t| = 2ReΦ(E, t)/|t|, (35)

that features the logarithmic behavior at low |t|, at three
values of the electron beam energy relevant for the Mainz
A1 experiment with the proton [1] and the deuteron [24]
target, the latter being currently under analysis. It is
compared to the experimental sensitivity of the Mainz
experiments that is obtained as

δσRE , exp.
R /|t| = −R2

E/3 (1± δRE/RE) . (36)

For the proton, the experimental result of RE = 0.879(8)
fm translates into

δσRE , exp.
R /|t| = −6.61(12)GeV−2. (37)

This experimental sensitivity is compared in Fig 2 to the
numerical evaluation of Eq. (34) in the kinematics of the
A1 Mainz experiment [1] The energy dependence (differ-
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|t| (GeV²)

0.06
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0.1
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0.16

δσ
ʀ(

E,
t)/

|t|
 (G

eV
⁻²)

E = 180 MeV
E = 315 MeV
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Exp. Sensitivity

FIG. 2: (Color online) Results for the TPE effect on the re-
duced cross section δσR(E, t)/|t| for the proton, as function
of |t| in GeV2 for three values of the LAB beam energies:
180 MeV (solid black curve), 315 MeV (long-dashed red
curve), and 450 MeV (dot-dashed blue curve). The experi-
mental sensitivity is shown by a thin dotted horizontal line.

ence between the solid, dashed and dash-dotted lines) re-
flects the energy dependence of the photoabsorption cross
section around the ∆(1232) region. For the deuteron the
projected precision of 0.25% [24] together with the recent
global extraction of the deuteron radius from scattering
and spectroscopy data Rd

E = 2.1424(21) fm [2] leads to

δσRE , exp.
R /|t| = −39.278(196)GeV−2, (38)

the uncertainty corresponding to a 0.25% projected pre-
cision of the scattering experiment. A somewhat smaller
value of 2.130(3) fm was extracted from the electron scat-
tering data alone in Ref. [25]; however, the difference is

Gorchtein, arXiv: 1406.1612 (2014)

Model-independent analysis of corrections in forward kinematics 
(forward angles, low Q²) using dispersive analysis

TPE amplitude Φ(E):        See also Brown, Phys Rev D 1, 1432 (1970)

Total photoabsorption 
cross section



Summary

• Lots of interesting new theoretical work motivated 
by new experimental results

• Dispersive method promising approach with 
connection to data in forward angle limit
–A similar approach is essential for the γZ box in Qweak 

parity-violation kinematics


