Virtual Photon Tagging: Probing Confinement Scale QCD

R. G. Milner for A.M. Bernstein, MIT *Cornell Workshop*

Symmetry Tests in Photo-pion Production A.M. Bernstein AIP Conf. Proc. **1563**, 159 (2013)

June, 2015

Physics Opportunities

- γN -> πN amplitudes: chiral symmetry predictions
- Use proton, D, and ³He thin gas targets => recoil detection
- Test first principle few-body calculations
- Test isospin violation: m_d-m_u
- Measure NN charge symmetry violations
- Measure Compton scattering -> nucleon polarizabilities
- Elastic ep scattering -> proton charge radius

γp -> π^o**p** Forward Proton Detector Near Threshold

Figure 35: Schematic representation of a possible hadron and photon d study threshold $\gamma p \rightarrow \pi^0 p$ and $\gamma p \rightarrow \eta p$.

Detailed scientific proposal document available

Small Angle Electron Scattering

- Measures electrons that have interacted in target
- Has higher efficiency than conventional taggers most photons do not interact in target
- Can use high currents with pure, thin targets
- Can observe low energy recoil particles $\gamma p \rightarrow \pi^0 p, \pi^+ n \quad \gamma n \rightarrow \pi^0 n, \pi^- p \quad \gamma D \rightarrow \pi^0 D$
- Coherent π^0 production in D, ³He measure relative signs of $\gamma p \rightarrow \pi^0 p$, $\gamma n \rightarrow \pi^0 n$ amplitudes
- Low Q², virtual photons almost real (transverse)
- Small transverse beam spot

Mainz photon tagger and detector state-of-the art

Figure 13: The photon tagger in the A2 experimental hall at MAMI.

PM Tubes

Virtual Photon Flux

Møller – major background for e-detector

Tagged vs. Virtual Photons

In Tagged Photon Experiments:

- Most photons do not interact in the target
- Data taking is limited by rates in the tagger
- Thick targets are required, which limits the energy region
- Polarized targets have extraneous material, e.g. butanol: C, O produce background

Using Virtual photons:

- Is more efficient
- Require **energy > 300 MeV** for pion production experiments
- Detected electrons have interacted in the target
- Thin targets allow **detection of low energy recoils** limited by rates in forward electron counter

Low current $\approx 1 \text{ mA}$

- thin, windowless unpolarized gas targets $p \approx 1 \text{ mm Hg}$
- measure low energy π^+ , p recoil

High current ≈ 100 mA

- Utilize windowless polarized gas targets (transverse and longitudinal)
- Polarized electrons for complete program

Is $a_{nn} = a_{pp}$?

Testing charge symmetry

- NN S-wave scattering lengths
- Measure with $\gamma D \rightarrow nn \pi^+$
- Check a_{np} with $\gamma D \rightarrow np \pi^0$

Testing Isospin Conservation $\gamma N \rightarrow \pi N$

There are 3 isospin matrix elements,

4 reaction channels.

The test of isospin conservation is:

$$A(\gamma p \to \pi^+ n) + A(\gamma n \to \pi^- p)$$
$$= \sqrt{(2)} [A(\gamma n \to \pi^0 n) - A(\gamma p \to \pi^0 p)]$$

A = multipole matrix elements s wave (E_{0+}) , 3 p wave)

Make four measurements to test IS conservation via relation above.

Expect IS breaking from QCD

- $L_{QCD} = L_0 (m_q \rightarrow 0) + L_m (quark mass term)$
- L₀ has chiral symmetry; spontaneously broken
 ⇒ Nambu-Goldstone Bosons (π, η, K)
 ⇒ ChPT: effective theory of QCD
- L_m =A(m_u+ m_d) + B (m_u- m_d) explicitly breaks chiral symmetry, B term also breaks IS symmetry
- Strong isospin symmetry violation
 - In general: $(m_d m_u)/\Lambda_{QCD} \approx 2\%$.
 - However, $\Delta a (\pi^{\circ}N) / a(\pi^{\circ}N) \approx 30 \%$ (Weinberg)
 - Needs to be tested experimentally: $\gamma N \rightarrow \pi^{\circ} N$ near threshold

Experimental Tests of Isospin Breaking

- $\gamma N \rightarrow \pi^{\circ} N$ near threshold, transverse polarized target sensitive to πN scattering
- Recent result: submitted for publication
 Mainz A2 collaboration-S.Schumann *et al.* submitted May 2015
 photon tagging, butanol target, C,O produce background

Summary

There is a bright future using Virtual Photon Tagging to probe the confinement scale in QCD

Physics Opportunities

- $\gamma N \rightarrow \pi N$ amplitudes: chiral symmetry predictions
- Use proton, D, ³He targets
- Test first principle few body calculations
- Test isospin violation: m_d-m_u
- Measure NN charge symmetry violations
- Measure Compton scattering -> nucleon polarizabilities
- Measure elastic ep scattering -> proton charge radius