Dark Matter/Forces & Axions Session Review

Gordan Krnjaic

Intense Electron Beam Workshop Cornell University, June 19, 2015

THE GALACTIC CENTRE EXCESS: REVIEW, INTERPRETATION AND FUTURE DIRECTIONS

NICK RODD - MIT

INTENSE ELECTRON BEAMS WORKSHOP 06/18/15 IMAGE COURTESY OF NASA GODDARD/A. MELLINGER (CENTRAL MICHIGAN UNIV.) AND T. LINDEN (UNIV. OF CHICAGO)

GCE REVIEW: FERMI SATELLITE

- Fermi Large Area Telescope (LAT)
 - Wide field of view covers the entire sky in 2 orbits
 - Energy range: 20 MeV 300 GeV
 - Data publicly available

The Gamma-Ray Sky

Where should we look for signs of DM annihilation? Recall photon flux from DM annihilation:

$$\Phi(E_{\gamma}, l, b) = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN_{\gamma}}{dE_{\gamma}} J(l, b)$$

Particle physics: what the DM is Astrophysics: how the DM is distributed

- Galactic centre has the largest value of J on the sky good place to look
- Find an excess over the expected background: Galactic Centre Excess

GCE REVIEW: SPECTRAL PROPERTIES

Spectrum is the emission correlated with a generalized NFW squared profile integrated along the line of sight, as determined by a template fit (-) = 2

$$\rho(r,\gamma) = \rho_0 \frac{(r/r_s)^{-\gamma}}{(1+r/r_s)^{3-\gamma}}$$

Result from Daylan, NLR et al - overlaid is spectrum of 43.0 GeV DM annihilating into b-quarks with $\sigma v=2.25 \times 10^{-26} \text{ cm}^3/\text{s}$

Result from CCW - includes systematics

Generically cascade spectra:

- are described by just f, ε_f and the number of steps in the large hierarchies regime
- are peaked at lower x, allowing higher mass DM to fit the GCE
- are broader, opening the way for final states with sharper direct spectra
- can ease tension with direct detection and collider bounds (see e.g. 1405.0272 or 1404.6528)
- can provide an approximation to more complex dark sectors that might involve hadronization

CONCLUSIONS

- The Galactic Centre Excess is an interesting potential DM signal still a long way from a conclusive answer though
- Cascade spectra are much simpler than one might expect:
 - Spectrum determined by three parameters: n, ϵ_f and f
 - The preferred m_{χ} - $\langle \sigma v \rangle$ for GCE is determined by the power into photons and the width of the spectrum
- Cascades in the dark sector increases the viable mass and cross section parameter space for the GCE
- Exactly how much depends on whether we attribute high energy data points to the excess
- Initial results of looking at the high energy tail of the GCE suggest the excess extends to at least 10 GeV and maybe higher, but these results are still preliminary

The Heavy Photon Search Experiment at Jefferson Lab

Takashi Maruyama, SLAC For the HPS Collaboration Intense Electron Beams Workshop Cornell University, June 17-19, 2015

Look for radiated A' decay to e^+e^- , $(\mu^+\mu^-)$

Very high luminosities: Intensity Frontier Physics.

P. Schuster, R. Essig et al, Intensity Frontier WS '11 summary paper.

Bump Hunt:

Look for signal over background.

Bump Hunt + Vertexing:

Look for signal over background, reduce background with vertexing.

BEST: Bjorken, Essig, Schuster, Toro, Phys.Rev. D80 (2009) 075018

E(e-) [GeV]

Full HPS Reach

Summary

- We have roughly 1/3 PAC week with Si at 0.5 mm
 - 15 mrad acceptance
- Beamline, ECal, Trigger and SVT all worked well
 - Beam background and trigger rates are consistent with simulations.
- Lots of work to do ..
 - Check Trident Yield in the data
 - ECal energy calibration
 - SVT alignment
 - Understanding the vertex tails
- But a physics result may be in reach

Search for a **Dark Photon**: proposal for the experiment at VEPP-3.

I.Rachek, B.Wojtsekhowski, D.Nikolenko

IEBWorkshop Cornell University June 18, 2015

A' from annihilation of beam's positrons and target electrons

I.Rachek Friday, June 19, 15 June 18, 2015 🛛 3

The concept of search in annihilation

- $\bullet\,$ measure energy and emission angle of $\gamma\text{-quantum}$
- search for a "bump" on top of QED background
- A'-boson should appear in a missing mass spectrum as a peak above QED background:
- peak width is defined by energy and angular resolutions of the $\gamma\text{-detector}$

Search sensitivity: decay mode-independent search of A'

I.Rachek

dark photon at VEPP-3

Conclusion

- A decay mode independent search for a dark photon is effective in a setup with an intense positron beam and an internal hydrogen gas target.
- Crystals from the CLEO endcap EM-calorimeter would be a good choice for the photon-detector.
- If the proposal is accepted the measurement at the ByPass at VEPP-3 can be prepared and performed in 3-4 years.
- Budker Institute has a good opportunity to contribute to the worldwide hunt for a dark photon.

INTENSE ELECTRON BEAMS WORKSHOP CORNELL UNIVERSITY, JUNE 17-19, 2015

2015-06-18

IEB Workshop Cornell U.

Sensitivity $A' \rightarrow e+e-$

- Precision test of QED radiative processes in electron-proton elastic scattering as Q²→0
- Completely calculable
- Complete reconstruction of final-state
- 5σ discovery limit
- 1 ab⁻¹ attained in several months of data taking with 10 mA at 100 MeV on 10¹⁹ cm⁻² target
- Green region is present muon (g-2) result explained by a dark force

Freytsis, Ovanesyan, and Thaler JHEP **1001**, (2011) 111

Sensitivity A'→invisible

Friday, June 19, 15

2015-06-18

Summary

- The search for new physics beyond the Standard Model must take place at all energy scales
- There are indication for a dark photon in the mass range below 1 GeV. Despite intensive searching no signature of A' found so far
- DarkLight is designed to search for dark photon with increased sensitivity of 5σ in the mass range 10 to 100 MeV/c by bringing new experimental techniques
- DarkLight is technically transformational: beam, target, detector, and readout
- An MRI proposal to carry out phase-I was founded by the NFS in July 2014. Data taking could begin in 2016
- The full DarkLight experiment design will be finalized in the next 3-4 months, full proposal submission anticipated in the fall of 2015

2015-06-18

e⁻ Beam Dump eXperiment(s) to Search for Light Dark Matter

Gordan Krnjaic

& Eder Izaguirre, Philip Schuster, Natalia Toro 1307.6554 & 1403.6836

& The BDX Collaboration

1406.3028

Intense Electron Beam Workshop Cornell University, June 18, 2015

Thermal Target Reach

Electron beam-dump searches are powerful

Convincing discovery potential Negligible beam BG, reducible cosmic BG

High luminosity & low cost

Can probe light thermal DM

Cover scenarios other methods can't

Complement visible A' searches

Cover nearly all remaining $(g-2)_{\mu}$ territory

Run parasitically at existing facilities

Jefferson Lab, Cornell, SLAC, Mainz, Fermilab (?)

Stay tuned BDX positive review from JLAB PAC-42