Laser Searches for New Particles at Fermilab

William Wester Fermilab

INVIGABLE 1 SER BEAK

Outline

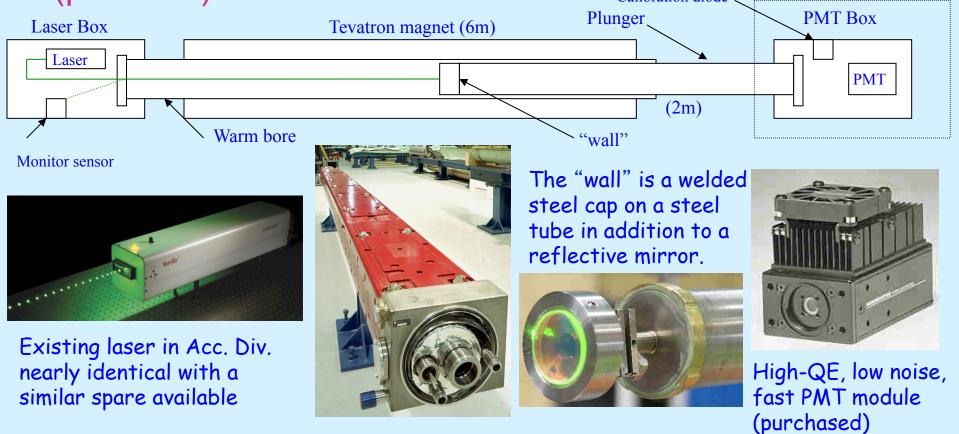
- Motivation
 - Experimental evidence
 - Theoretical interest
- Experimental Implementation

 GammeV and GammeV-CHASE
- Results

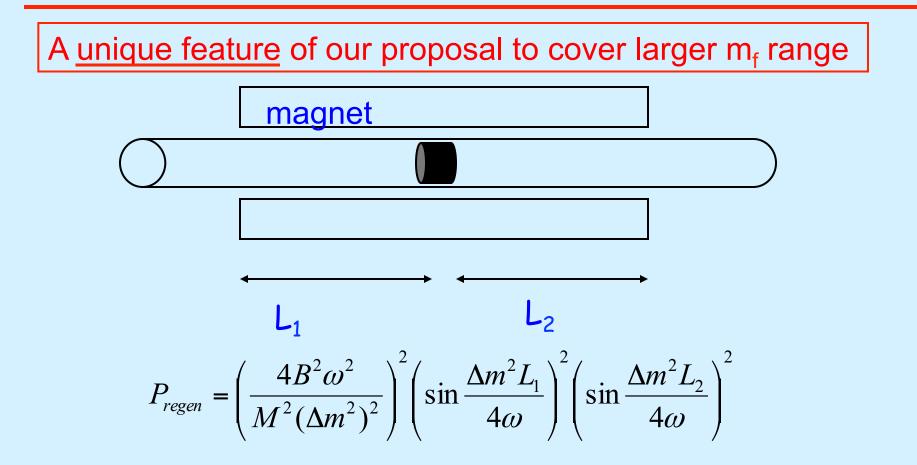
Outline x 2: Once for the experiments and once for lessons learned.

A strong hint in 2006

PVLAS: designed to study the vacuum by optical means: birefringence (generated ellipticity) and dichroism (rotated polarization). Reported results in 2006 interpreted as evidence for a new scalar "ALP" particle.

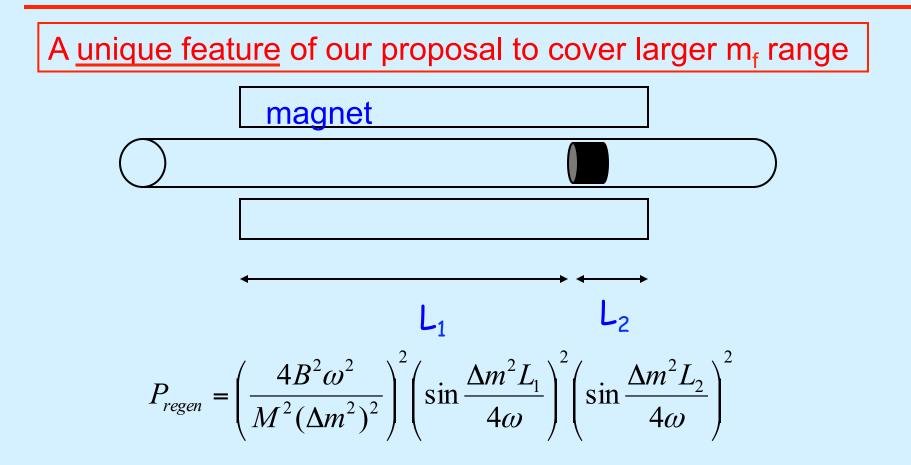

W. Wester, Fermilab, Cornell, Intense Electron Beams Workshop

Theoretical motivation


- milli-eV (10⁻³) eV mass scale arises in various areas in modern particle physics.
 - Dark Energy density
 - Λ⁴ = 7 x 10⁻³⁰ g/cm³ ~ (2x10⁻³ eV)⁴
 - Neutrinos
 - $(Dm_{21})^2 = (9x10^{-3} \text{ eV})^2$
 - $(Dm_{32})^2 = (50 \times 10^{-3} \,\mathrm{eV})^2$
 - See-saw with the TeV scale:
 - meV ~ TeV²/M_{planck}
 - Dark Matter Candidates
 - Certain SUSY sparticles (low mass gravitino)
 - Axions and axion-like particles

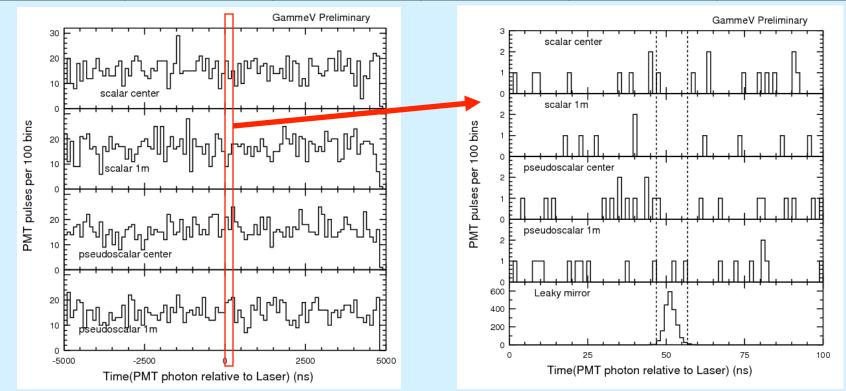
GammeV Experiment

Search for evidence of a milli-eV particle in a light shining through a wall experiment to unambiguously test the PVLAS interpretation of an axion-like (pseudo-)scalar



Vary wall position to change baseline: Tune to the correct oscillation length

Scalar interactions: Polarization aligned with B field Pseudoscalar interaction: Polarization anti-aligned with B field


Vary wall position to change baseline: Tune to the correct oscillation length

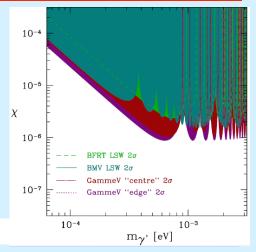
Scalar interactions: Polarization aligned with B field Pseudoscalar interaction: Polarization anti-aligned with B field

Time correlate laser pulses with phototube hits

Spin	Position	# Laser pulse	# photon / pulse	Expected Background	Signal Candidates
Scalar	Center	1.34 M	0.41e18	1.56±0.04	1
Scalar	1 m	1.47M	0.38e18	1.67±0.04	0
Pseudo	Center	1.43M	0.41e18	1.59±0.04	1
Pseudo	1m	1.47M	0.42e18	1.50±0.04	2

W. Wester, Fermilab, Cornell, Intense Electron Beams Workshop

GammeV Limits

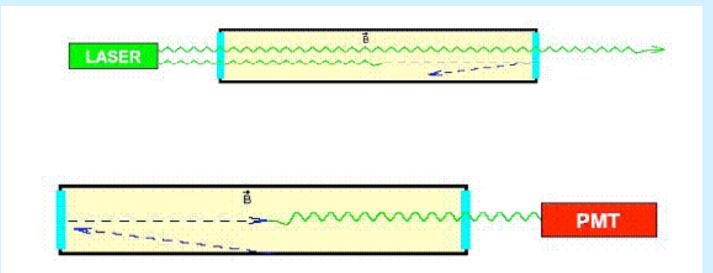

 Results are derived. We show 3s exclusion regions and completely rule out the PVLAS axion-like particle interpretation by more than 5s.
 Pseudoscalar
 Scalar

 Job is done. Limit generally improves slowly (8th root) vs. longer running time, or increased laser power, etc.

Other new particles

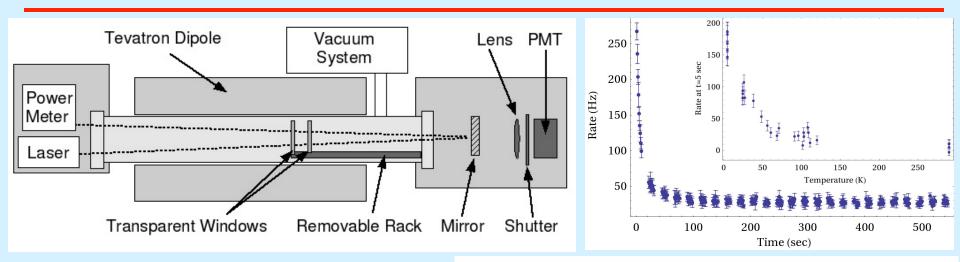
A dark photon could also cause light to shine through a wall even without an external magnetic field. The GammeV null result can also be interpreted as sensitivity for a new U(1) dark photon.

Phys. Rev. D77, 095001 (2008)

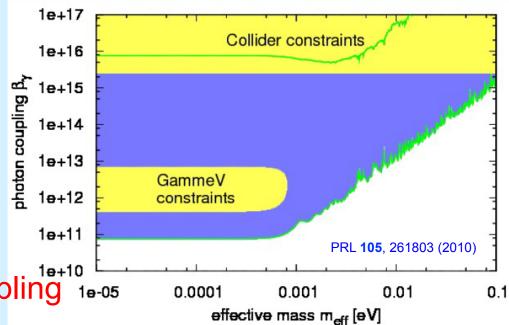

 An exotic type of new particle called a <u>chameleon</u> – a scalar – Tensor interaction results in a particle whose properties depend on it's environment.

$$\mathcal{L}_{\text{int}} = -V(\phi) + \exp\left(\frac{\phi}{M_D}\right)g_{\mu\nu}T^{\mu\nu} - \frac{1}{4}\frac{\phi}{M}F_{\mu\nu}F^{\mu\nu}$$

• The chameleon mechanism (Khoury and Weltman) was originally postulated as a mechanism to account for the cosmic expansion – i.e. "a dark energy particle".


"Particle in a Jar" / Afterglow

- Chameleon properties depend on their environment effective mass increases when encountering matter.
 - A laser in a magnetic field might have photons that convert into chameleons which reflect off of the optical windows. A gas of chameleons are trapped in a jar.
 - Turn off the laser and look for an afterglow as some of the chameleons convert back into detectable photons.



W. Wester, Fermilab, Cornell, Intense Electron Beams Workshop

CHASE: Chameleon Afterglow Search

When we started to take data, we observed an afterglow that did not depend on B field (so, no evidence for chameleons). The afterglow rate did depend on temperature in a manner similar to vacuum grease. First limits for chameleons coupling to photons.

Lessons Learned - Motivation

- Motivation
 - Experimental evidence
 - Right before we started taking data in earnest, PVLAS reported no anomaly when the apparatus was slightly reconfigured.
 - Did not provide an explanation of the original result
 - A chameleon possibility remained consistent with all obs.
 - Theoretical interest
 - milli-eV as a mass scale is suggestive, but not uniquely so.
 - Is the effort worth covering the yet-to-be-explored parameter space?

Lessons Learned - Experiment

- Experimental Implementation
 - GammeV
 - Some cleverness can go a long way ... the plunger, using time correlation to reduce bkgd.
 - We had a target goal in mind. We were probing a region where CAST and star-cooling limits were several orders of magnitude more stringent.
 - CHASE
 - We spent a year working with a theorist to make sure we understood the theoretical implications of the experiment (self-interactions, residual gas).

 Benefits from calibration signals – good to see something when looking for nothing.

Lessons Learned - Results

- Results
 - These are exciting times to use reasonable resources to probe new possible portals into the dark sector.
 - The presence of background limits extending sensitivity. Many experiments are designed around high rate when the focus should be on low background.
 - Next target is to improve to g~10⁻¹¹ (IAXO, ALPS). Suggest work continue to make "hints" become either not-so-strong or more robust.
- There is Discovery potential!