DARK FORCES AND DISCOVERY OPPORTUNITIES AT INTENSE ELECTRON BEAMS

> NATALIA TORO PERIMETER INSTITUTE

IEB 2015 CORNELL UNIVERSITY

COPERNICAN PARTICLE PHYSICS?

COPERNICAN PARTICLE PHYSICS?

extension of Standard Model? (superpartner, new weak multiplet...)

photon

g

gluon

Is there room for new physics <u>not charged</u> under Standard Model forces? What do we know about such physics, and how can we learn more?

		*
THE ETANOLARD MODEL Fermions Besons U pp charm top up charm top photon U pp charm top up charm top photon U pp top top up Charm botom Z botom Up Vp Nr W botom up Muschen muschen gluon Up Up Up Top up muschen top gluon	?	• • •
?	?	?

SEARCHING FOR PHYSICS "OUTSIDE" THE STANDARD MODEL

- Dark/Hidden Sectors: Mapping out the Possibilities
- Searching for Dark Forces
 - Multi-purpose collider experiments
 - Dedicated fixed-target experiments
- Light Dark Matter
 - An opportunity for very low-energy beams

HOW TO LOOK FOR PHYSICS FAR BEYOND THE SM?

Accessible mass isn't enough – need interactions

⇒ suppressed by high power of mass-scale at which interactions are generated

 $(\bar{\psi}_e\psi_e)_{SM}(\bar{\chi}\chi)_{new}/\Lambda^2$

[analogous to approximate stability of proton in SM]

Even if χ is light, large $\Lambda \Rightarrow$ unobservable effect.

The few operators with no Λ -suppression* present an opportunity to explore this physics

*gauge-invariant combinations of SM and new fields with dimension < 4

THE "PORTALS"

sterile neutrinos?

Generic low-energy remnants of *any* non-SM sector Only light-vector portal is truly accessible in low-energy production (e & p couplings to h, v are small)

AXIONS AND THE ALMOST-PORTALS

A pseudo-scalar boson can have several interactions suppressed by only one power of mass

Axion Portal
$$\begin{cases} \frac{1}{\Lambda}G_{\mu\nu}\tilde{G}^{\mu\nu}a\\ \frac{1}{\Lambda}\bar{f}\gamma^{\mu}\gamma_{5}f\partial_{\mu}a\\ \frac{1}{\Lambda}F_{\mu\nu}\tilde{F}^{\mu\nu}a \end{cases}$$

Even for large Λ , coherent-field effects can compensate for weak coupling

Sources and Sizes of Kinetic Mixing $\frac{1}{2} \epsilon_Y F_{\mu\nu}^Y F'^{\mu\nu}$

- If absent from fundamental theory, can still be generated by **perturbative** (or non-perturbative) quantum effects
 - Simplest case: one heavy particle ψ with both EM charge & dark charge

generates $\epsilon \sim \frac{e g_D}{16\pi^2} \log \frac{m_{\psi}}{M_*} \sim 10^{-2} - 10^{-4}$

Sources and Sizes of Kinetic Mixing $\frac{1}{2} \epsilon_Y F_{\mu\nu}^Y F'^{\mu\nu}$

- If absent from fundamental theory, can still be generated by **perturbative** (or non-perturbative) quantum effects
 - In Grand Unified Theory, symmetry forbids treelevel & 1-loop mechanisms. GUT-breaking enters at 2 loops

generating $\epsilon \sim 10^{-3} - 10^{-5}$ ($\rightarrow 10^{-7}$ if both U(1)'s are in unified groups)

EFFECTS OF KINETIC MIXING $\frac{1}{2} \epsilon_Y F_{\mu\nu}^Y F'^{\mu\nu}$

Regardless of where it comes from, kinetic mixing can always be re-interpreted as (mainly) giving matter of electric charge qe an A' coupling $\propto qe$

Dark matter can have an independent coupling g_D to A'

BYCATCH

New, weak gauge forces of the Standard Model (e.g. to B–L) can be found by the same kinds of searches. V

Important to keep this in mind in comparing e.g. p to e^{\pm} beams

May be relevant to e.g. muonic hydrogen anomaly

WIDE PARAMETER SPACE: HIDDEN VECTORS

[Figure from 2013 Intensity Frontier report – Javier Redondo]

new particles

SOURCES AND SIZES OF MASS TERM

- MeV-to-GeV is **allowed** at couplings >10⁻⁷
- Possible origin: related to M_Z by small parameter
 - e.g. supersymmetry+kinetic mixing ⇒ scalar coupling to SM Higgs, giving

 $m_{A'} \sim \sqrt{\epsilon} M_Z \lesssim 1 {
m GeV}$ [e.g. Cheung, Ruderman, Wang, Yavin; Katz, Sundrum; Morrissey, Poland, Zurek]

- motivated by g-2 and dark matter anomalies
- A particularly **relevant** and **accessible** range to explore

A FIELD GUIDE TO DARK FORCES PRODUCTION

(like ordinary radiation of light, but suppressed by ε)

A FIELD GUIDE TO DARK FORCES DECAY

"Generic" Decay:

A'

 χ (not ε -supressed!) If any dark-sector matter χ has $\bar{\chi} = \frac{m_{\chi} < 2m_{A'}}{decay}$ dominates

Two cases: $-\chi$ stable & invisible

- χ decays into SM particles, A' \rightarrow >2 charged particles searches at BaBar and KLOE

To test "dark sector" idea, we need to search for both!

A FIELD GUIDE TO DARK FORCES DECAY

To test "dark sector" idea, we need to search for both!

his

iinates

les,

AN EXPERIMENTAL RENAISSANCE

High intensity

colliders

SLAC

High-energy colliders

Fixed Target

ATLAS

CMS

KEKB

KEKB-

COLLIDER PRODUCTION

Radiative return

Rare meson decays

$X \to YU$	n_X	$m_X - m_Y$ (MeV)	$\mathrm{BR}(X \to Y + \gamma)$	$\mathrm{BR}(X \to Y + \ell^+ \ell^-)$	ε≤
$\eta ightarrow \gamma U$	$n_\eta \sim 10^7$	547	$2 \times 39.8\%$	6×10^{-4}	2×10^{-3}
$\omega \to \pi^0 U$	$n_{\omega}\sim 10^7$	648	8.9%	$7.7 imes 10^{-4}$	5×10^{-3}
$\phi \to \eta U$	$n_{\phi} \sim 10^{10}$	472	1.3%	1.15×10^{-4}	1×10^{-3}
$K^0_L \to \gamma U$	$n_{K_{L}^{0}}\sim 10^{11}$	497	$2\times(5.5\times10^{-4})$	$9.5 imes 10^{-6}$	2×10^{-3}
$K^+ \to \pi^+ U$	$n_{K^+}\sim 10^{10}$	354	-	2.88×10^{-7}	7×10^{-3}
$K^+ ightarrow \mu^+ u U$	$n_{K^+}\sim 10^{10}$	392	$6.2 imes 10^{-3}$	$7 imes 10^{-8a}$	2×10^{-3}
$K^+ \rightarrow e^+ \nu U$	$n_{K^+}\sim 10^{10}$	496	1.5×10^{-5}	$2.5 imes 10^{-8}$	7×10^{-3}

PLB706 (2012) 251-255

WIDE BREADTH OF SEARCHES (just a few representative examples)

Off-shell A' portal

Potential to see rich hidden sectors in complex multi-body final states (searches ongoing at BaBar + several completed)

Non-Abelian Dark Sector

GOING FURTHER: FIXED TARGET

Jefferson Lab Continuous Electron Beam Accelerator Facility

• Delivers beam up to 12 GeV to 4 experimental hall

Halls A,C up to 100 μ A Hall B, D: 1 μ A

- 1.5 GHz RF \Rightarrow each hall gets bunch every 2–4 ns
- Commissioning beam to halls after recent energy upgrade & addition of Hall D
- Only multi-GeV continuous electron beam in the world!

http://hallaweb.jlab.org/experiment/APEX/

Search for new gauge boson A' using Hall A highresolution spectrometers (HRS)

APEX

http://hallaweb.jlab.org/experiment/APEX/

Search for new gauge boson A' using Hall A highresolution spectrometers (HRS)

<u>Status</u>

Test run (2010): concept & technical demonstration; weekend run achieved world-record sensitivity

Optimized septa magnet constructed Smaller beam line items funded HRS detectors ready to go 21

TURNING WEAKNESS INTO STRENGTH

TURNING WEAKNESS INTO STRENGTH

HPS: RESONANCE + VERTEX SEARCHES

Allows sensitivity to very weak couplings with ~cm decay vertex

Engineering run this spring!

https://confluence.slac.stanford.edu/display/hpsg/Heavy+Photon+Search+Experiment

25

Tested this interpretation of muon magnetic moment anomaly!

A FIELD GUIDE TO DARK FORCES DECAY

To test "dark sector" idea, we need to search for both!

his

les,

The **same interaction** that produces dark matter in the early Universe can also lead to production and detection in laboratory experiments!

The **same interaction** that produces dark matter in the early Universe can also lead to production and detection in laboratory experiments!

(thermal abundance ⇒ **minimum** interaction strength)

Izaguirre, Krnjaic, Schuster, NT 1505.00011

The **same interaction** that produces dark matter in the early Universe can also lead to production and detection in laboratory experiments!

(thermal abundance ⇒ **minimum** interaction strength)

Scalar Thermal Relic DM 10^{-3} LHC 10^{-4} LEP 10^{-5} 10^{-6} **BaBar XENON 10** $(m_{arphi}/m_{A'})^4$ 10^{-7} 10^{-8} 10^{-9} Hidden from Relic Density Belle II LSND 10⁻¹¹ direct detection 10^{-12} SND.X.SIDA in low-mass **Super CDMS** 10⁻¹⁴ **SNOLAB** blind spot 10^{-15} 10⁻¹⁶ 10 10^{3} 10^{2} m_{ω} (MeV)

Izaguirre, Krnjaic, Schuster, NT 1505.00011

The **same interaction** that produces dark matter in the early Universe can also lead to production and detection in laboratory experiments!

(thermal abundance ⇒ **minimum** interaction strength)

Hidden from direct detection in low-mass blind spot

Izaguirre, Krnjaic, Schuster, NT 1505.00011

THE FUTURE AHEAD

ATLAS

ab CEB

- Portals to explore physics neutral under Standard Model
 - Organize around interaction with ordinary matter, and visible vs. darksector decay
- Powerful sensitivity from current, planned, and ongoing experiments
- A lot of uncharted territory: opportunities abound for further exploration – and discovery – with intense electron beams!

