High Density Targets for External Beams

Silviu Covrig Dusa

Jefferson Lab

Intense Electron Beams Workshop Cornell 18 June, 2015

- Liquid hydrogen (LH2) targets
- Designing the Qweak target with Computational Fluid Dynamics (CFD)
- Designing the next generation of targets with CFDFAC(ility)@JLAB
- Summary

Liquid Hydrogen Targets

- Electron energy loss in a target: $P = IL\rho \frac{dE}{dx}$ [W], I = beam current, L = target length in beam, ρ = target density, x = target "thickness" [g/cm²]
- Typical conditions: 20 cm LH2, 100 μA beam, 71 kg/m³ density (25 psia, 20 K), expect P ~ 700 W heat and luminosity *Q* ~ 5e38 cm⁻²s⁻¹
- High power targets P < 1 kW, early developments at SLAC (1990s), continued at Caltech (SAMPLE, G0, E158 targets 1994-2002) and JLAB (1994-present)
- Very high power targets P > 1 kW, Qweak@JLAB (2.5 kW, 2010), MØLLER@JLAB (5 kW, ~2020), P2@MESA (4 kW, ~2018)
- IEB-like target: 20 cm LH2, 1 mA, beam heating power 6500 W, cooling power needed >7000 W (rule of thumb for costing a He cryogenic plants \$1M/1kW)

A Liquid Hydrogen Target in PVES @JLAB

Typical parity violating electron scattering or PVES experiment:

- Electron beam helicity flipped periodically with frequency $f_h = 1/T_h$
- Beam rastered on area A_r on target, impinges on a Al-made cell of length L, heating the fluid in the bulk and at the Al windows
- LH2 recirculates in a closed loop, beam heating removed by a heat exchanger
- Measure a particle yield (N) for each helicity state, normalized to beam current and a PV asymmetry is formed between opposite helicity state yields
- Typical PV asymmetry ~ 1 ppm (parts per million)

The heated fluid produces luminosity loss (density reduction) and PV asymmetry width enlargement (density fluctuations on the beam helicity time scale)

Systematic Effects of Fluid Targets for PVES

Target density reduction = luminosity loss

$$\frac{\Delta N}{N} = \frac{N_{low \, beam} - N_{high \, beam}}{N_{low \, beam}} \, (\%)$$

Target density fluctuations = asymmetry width enlargement

Helicity patterns for PV asymmetry: pairs + - , quartets +--+

$$(\Delta A_{\rm exp})^2 = \sigma_{A_{\rm exp}}^2 = \sigma_0^2 + \sigma_{noise}^2$$

 $\sigma_0^2 = \frac{1}{N} = \frac{f_h}{xR}$

x = 2 for pairs x = 4 for quartets

Counting statistics

Target design focuses on minimizing the target noise

Yield loss, Qweak LH2 target

G0 asymmetry width enlargement

Asymmetry Width

Qweak case

, (Syllin	T _h = 960 HZ			
		$\sigma_{A_{exp}} (ppm)$		
Counting statistics	$\sigma_{A_{exp}}^2 = \sigma_0^2$	a	200	
Excess noise sources		00	200	
 Detector resolution (α) 	$\sigma_{A_{exp}}^2 = \sigma_0^2 (1 + \alpha)$	α = 0.1	210	
 Deadtime (dt) 	$\sigma_{A_{exp}}^2 = \sigma_0^2 (1+\alpha)(1+dt)$	dt = 0.11	221	
 BCM resolution (σ_{BCM}) 	$\sigma_{A_{exp}}^2 = \sigma_0^2 (1 + \alpha)(1 + dt) + \sigma_{BCM}^2$	60 ppm	229	
 Target boiling (σ_b) 	$\sigma_{A_{exp}}^2 = \sigma_0^2 (1 + \alpha)(1 + dt) + \sigma_{BCM}^2 + \sigma_b^2$	50 ppm	234	

Asymmetry width: counting statistics + excess noise

Qweak asymmetry excess noise 17%

Qweak target excess noise ~3%; target design requirement was < 5%, achieved design goal Expected Qweak PV asymmetry ~ 200 ppb (parts per billion!)

MØLLER@2kHz: $\sigma_0 = 80$ ppm, which makes everything that much harder IEB@1kHz, 20 cm LH2 target at 1 mA, 20 GHz rate, $\sigma_0 \approx 100$ ppm, no worse than MØLLER

LH2 Targets for Parity Violation

Experiments	p / T / <i>ṁ</i> psia / K / kg/s	L cm	Ρ/Ι W/μΑ	beam spot mm	Δρ∕ρ %	δρ∕ρ ppm	E GeV
GO	25 / 19 / 0.3	20	500 / 40-60	2 x 2	1.5	238@15 Hz	3
Q _{weak}	35 / 20 / 1	35	2500 / 180	4 x 4	0.8	46@480 Hz	1
MØLLER		150	5000 / 85		<2%	<25@960 Hz	11
P2		60	4000 / 150				0.2
IEB		20	7000+ / 1000		<4%	<30@480 Hz	<0.5

No actual designs for the MØLLER and P2 target cells exist yet that are predicted to achieve the target noise requirements for these experiments

CFD-Driven Target Design

- CFD is a finite volume analysis software that solves the equations of fluid dynamics numerically with boundary conditions, modeled multi-phases, heating, beam raster motion etc.
- CFD can run either steady-state (predicts density reduction) or transient (could predict density fluctuations, but never done before) and it benefits from high performance computing (HPC, another name for parallel computing)
- The Qweak target was the 1st target at JLAB designed with CFD and it achieved its goals: CFD predicted 0.8% LH2 density reduction and we measured 0.8% yield reduction
- Transient CFD simulations are being developed to predict the Qweak target LH2 density fluctuations; this technology could be used to design the MØLLER and P2 LH2 targets (it would also benefit an IEB LH2 target)
- CFD software used ANSYS-CFD (which includes Fluent & CFX)

The Qweak target cell with Fluent at 180 µA beam, rastered 4x4 mm², LH2 in at 1 kg/s CFD predicted average relative density change in beam volume

Δρ/ρ ~ 0.8%

Electron beam heating at the Al windows LH2 boiling observed with a 2-phase mixture model in Fluent

Contours of Volume fraction (phase-2)

Mar 11, 2013 ANSYS Fluent 14.5 (3d, dp, pbns, mixture, rke)

Possible IEB LH2 Targets at 500 μA with CFD

- 35 cm Qweak-like target
 - 500 μ A, 4x4 mm² beam raster
 - $\Delta p = 0.25 \text{ psid } @ 1 \text{ kg/s and } 0.56 \text{ psid } @ 1.5 \text{ kg/s}, 7.5 \text{ liter cell}$
 - Al windows, 0.1 mm beam-in, 0.127 mm beam-out (same for both)
 - Beam power LH2 5870 W, Al windows 68 W, total power: 6500 W@20 K
- 20 cm cylindrical cell target
 - 500 µA, 2x2 mm² beam raster
 - $\Delta p = 0.61 \text{ psid } @ 0.3 \text{ kg/s}, 1.6 \text{ liter cell}$
 - Beam power LH2 3570 W, Al windows 68 W, total power: 4000 W@20 K

- 20 cm cylindrical cell top, sharing fluid space with a smaller length cylindrical cell, bottom, fluid space shown
- The cells have internal flow diverters that make the flow transverse to the beam direction
- Red arrows = fluid flow direction
- Black arrow = beam direction

Contours of Volume fraction (phase-2)

Mar 11, 2013 ANSYS Fluent 14.5 (3d, dp, pbns, mixture, rke)

Mar 11, 2013 ANSYS Fluent 14.5 (3d, dp, pbns, mixture, rke)

Summary of 500 μA Cells from Fluent

	Qweak Cell 35 cm	Cylindrical Cell 20 cm
Pressure drop (psid) @ Mass flow (kg/s)	0.25 @ 1	0.61 @ 0.3
Beam volume cross flow (m/s)	2.8	2.85
Δρ/ρ (%)	2.1	4.4
T in/out (K) Al windows	93/97	199/232
Power beam/total (W)	5940/6500	3630/4000

- Boiling spots in the bulk, film boiling at the windows!
- Design needed for both geometries to make them non-boiling in the bulk and mitigate the film boiling at the Al-windows

Conclusions

- The Qweak target has been a great success due to CFD design
- CFD has become a critical tool in designing high power, high density targets
- A CFD facility (CFDFAC) has been setup at JLAB to address targets design, CFDFAC has two HPC farms: one on 32 CPUs and one on 128 CPUs
- State of the art transient CFD simulations are being developed to capture target density fluctuations on any time scale
- The success of future PV experiments requires less than half the Qweak target noise while doubling the beam power

LH2 Target Design Considerations

Goals:

1. minimize LH2 density reduction (at 25 psia and 20 K LH2 density is 4.5% from boiling!)

2. minimize LH2 density fluctuations $\delta \rho / \rho$ (ppm) (for PV) $\delta \rho / \rho \rightarrow \sigma_{\rm h} < 5\%$ of $\sigma_{\rm h}$

Knobs (left) to turn (once the design is frozen):

- 1. LH2 pump speed, penalty: viscous heating (if immersed motor, add motor cooling to it)
- 2. Beam raster size, penalty: background, ...
- 3. Beam current, penalty: statistics
- 4. Sub-cooling LH2, penalty: available cooling power
- 5. Beam raster frequencies unknown effect (no studies yet)
- 6. Helicity frequency (for PV)

7.

Contours of Static Temperature (k)

Nov 14, 2008 FLUENT 12.0 (3d, dp, pbns, rke)