

Photocathodes for High Current Electron Guns

L. Cultrera

Cornell Laboratory for Accelerator-based Sciences and High average current photoinjector applications Education (CLASSE)

• ERL based x-ray sources

Electron-ion collider

Bunch charge	300 pC
Average current	6.4 mA
Energy	60 GeV
Norm. tran. emitt.	30 mm mrad

Electron cooling of hadrons

Bunch charge	77 pC	
Average current	100 mA	
Energy	5 GeV	
Norm. tran. emitt.	0.3 mm mrad	

Figure 7.5: LHeC ERL layout including dimensions.

Bunch charge	5300 pC
Average current	50 mA
Energy	15.9 GeV
Norm. tran. emitt.	30 mm mrad

POLARIZED!!

IEB Workshop 2015

Photocathode requirements

- High Quantum Efficiency
- Low intrinsic emittance
- Fast response time
- Ruggedness

Z. Zhao, B.M. Dunham, I.V. Bazarov, F.W. Wise, Optics Express 20 (2012) 4850

Photocathode choice still limited to few materials

Photocathode materials

Alkali antimonide growth

Cs₃Sb, CsK₂Sb, Na₂KSb photocathode are grown in the form of thin film by thermal evaporation in UHV over a suitable conducting substrate

IEB Workshop 2015

GaAs vs Alkali Antimonides

	GaAs	Alkali antimonides	
QE @ 532 nm	Exceed 15 %	Between 5 and 10% (depending on growth conditions and materials)	
Intrinsic emittance @ 532 nm	0.47 mm mrad / mm rms	0.56-0.48 mm mrad / mm rms	
Response time @ 532 nm	Less than a ps	Less than a ps	
Vacuum sensitivity	Very High (survive days in 10 ⁻¹¹ Torr)	High (survive months in 10 ⁻¹¹ Torr)	

GaAs cannot withstand high current levels (>20 mA) for very long times

B Dunham et al., Applied Physics Letters 102 (2013) 034105

Cornell Laboratory for Education (CLASSE)

Accelerator-based Sciences and GaAs and ions back bombardment

J Grames et al., AIP Conf. Proc. 980, 110 (2008)

Alkali antimonides ion back bombardment

Radial Distance from EC (mm)

Stay away from the electrostatic center!

~20 mA

2 hours

Cathode offset from center

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) The Cornell photoinjector

20m

Parameter	Metric	Status	Notes	
Average Current	100 mA		65 mA at 4 MeV (1300 MHz)	
Bunch Charge	77 pC		Pulsed mode (50 MHz)	
Energy	5 to 15 MeV		14 MeV max (due to cryo limits)	
Laser Power	> 20 W		> 60 W at 520 nm (1300 MHz)	
Laser Shaping	beer can dist.		Adequate for now	
Gun Voltage	500-600 kV		Currently operating at 350 kV	
Emittance	<0.5 µm (norm, rms)		Ultimate ERL goal 0.3 µm, with merger	
Operational Lifetime	>1 day		Recent improvements with new cathodes	

High average current runs

1/e QE 66 hr

Alklai antimonide based photocathode have been extensively tested in DC gun of the ERL injector prototype at Cornell University. MTEs, response time, QEs and lifetimes at high current are compatible with the operation of an ERL user facility.

14

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Na₂KSb: 48 hours long run

IEB Workshop 2015

Thin CsTe on GaAs

Improve lifetime of GaAs and of strained superlattices photocathodes used to generate **polarized electron beams**

SL with QE of 0.5% require 15 W of laser power on the cathode for generating 50 mA

Combine the ruggedness of solar blind CsTe with the high sensitivity of GaAs in the VIS-IR

Photon Energy [eV]

M. Kuriki et al., IPAC 2015

Cesium Auride

As was to be expected, the alloys of the AuM type are photo-electrically sensitive, but the sensitivity is too low to be of practical importance. An

A. Sommer, Nature 152, 215 (1943)

~0.5 W of VIS laser / mA average current !!!

- These results reopen the question of AuM semiconductors
- QEs in the range of few % can be achieved in the visible
- Lifetime properties at room and moderate temperature are encouraging
- MTE, Response Time yet to be characterized

S. A. Khan, J. Vac. Sci. Tech B 30, 031207 (2012)

Coated metals

Possible way to enhance QE of metals:

- Reduction of workfunction
- Emission from intra-band states of insulating coatings

S. Ling et al, Phys. Chem. Chem. Phys. 15, 19615 (2013)

266 nm	KBr	CsBr	CsI
Film thick. (nm)	7	7	8
QE enh. b.a.	1.8	14	18
QE enh. a.a.	2.6	77	2700
WF b.a. (eV)	3.96	3.76	3.68
WF a.a. (eV)	3.66	3.41	1.74

W. He et al, Appl. Phys. Lett. 102, 071604 (2013)
L. Kong et al., Appl. Phys. Lett. 104, 171106 (2014)

Z. Liu et al., Appl. Phys. Lett. 89, 111114 (2006)

~0.5 W of UV laser / mA average current !!!

With CsBr coating intrinsic emittance is 3x worse than bare Cu

2.63 mm mrad / mm

T. Vecchione, Phys. Rev. ST Accel. Beams 18, 040701 (2015)

Conclusions

- In the last few years lot of progress
 - The 100 mA level photocurrent milestone is within reach
 - Operational lifetimes have been largely improved due to extreme vacuum achievable in DC gun
- In the near future
 - CsTe looks promising in improving lifetime of III-V based photocathodes
 - New promising materials that need to be fully characterized

Thank you!