Calculations of $8 Z$ corrections-Box diagrams

Topics

- PV in ep scattering and QWeak
- A startling (at least in 2009) calculation
- It may be settled
- But we would like to be sure
- How PVDIS can help

relevant for today

- Parity violating (PV) electron scattering
- Usually, polarized electron, unpolarized target
- Parity violation exists in SM, from (small at low energy) Z-exchange

- Usually report

$$
\begin{aligned}
& \left.\qquad A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}=\text { helicity of electron }\right)
\end{aligned}
$$

QWeak---from elastic ep scatt.

- At LO, asymmetry comes from interference between photon exchange and Z-boson exchange,

- For $Q^{2}->0$,

$$
A_{P V}=-\frac{G_{F}}{4 \pi \alpha \sqrt{2}} Q^{2} Q_{W}^{P}
$$

- LO only,

$$
Q_{W}^{p, L O}=1-4 \sin ^{2} \theta_{W}
$$

For later, JLab QWeak runs at $E_{\text {elec }}=1.165 \mathrm{GeV}, \mathrm{Q}^{2}=0.026 \mathrm{GeV}^{2}$ Mainz (P2 at MESA) plans for $E_{\text {elec }}=150 \mathrm{MeV}$

QWeak

- Interesting because of HO corrections, e.g.,

- Changes balance between " 1 " and " $4 \sin ^{2} \theta$ w".
$1-4 \sin ^{2} \theta_{W} \rightarrow 1-4 \kappa\left(Q^{2}\right) \sin ^{2} \theta_{W} \equiv 1-4 \sin ^{2} \theta_{W}\left(Q^{2}\right)$
- Thus, $\sin ^{2} \theta$ w "runs" or "evolves" with Q^{2}.
- If SM complete---particle content and interactions known--evolution can be precisely calculated.

SM $\sin ^{2} \theta_{w}$ evolution

Each experiment is differently sensitive to potential new physics

$$
0 .
$$

neutrino deep-inelastic scattering cross-sections (controversial hadronic corrections not included)

Standard Model electroweak fit with uncertainty

Parity violating moller scattering

- If SM correct, result from QWeak will lie on curve.
- If not
- Precision needed!

and still more data will come

- From PDG, or from Erler, 1208.6262,
- with future hopes

Report: QWeak has data

from Mark Dalton, APS/DNP meeting, Fall 2012

But there are other corrections

$$
\gamma-Z \text { Box }
$$

- (Dashed line for Z.)
- Only one heavy propagator. Low momenta dominate loop.
- Both vector and axial Z-proton couplings contribute. Abbreviated $\square \gamma z^{V}$ and $\square \gamma z^{A}$.

Now starts a story

- Big note: $\square \gamma z^{V}(E)$ is odd in $E ; \square \gamma z^{A}$ is even in E (electron beam en.) (Crossing symmetry argument... .)
- Old days (< 2009), calculated basic box at threshold E=0. Thought actual E low enough to use this result.

- Still old days: Dumped $\square \gamma z^{\vee}$.
(+ reverse and crosses)
- Defacto just $\square \gamma z^{A}$. (Will hardly talk about it today.)

$\gamma-Z$ Box

- Gorchtein and Horowitz (PRL 102, 091806 (2009)) had insight to calculate the amplitude dispersively

- DR \rightarrow calculate whole amplitude form imaginary part.
- Imaginary part comes when intermediate states on shell.
- Like inelastic amplitude squared, i.e., for DIS. Squares given and measured as structure functions F_{i}.
- Only problem: $\mathrm{F}_{i} \gamma \gamma$ measured, not the interference term $\mathrm{F}_{i}{ }^{\gamma z}$.

Maybe a problem

- Gorchtein-Horowitz first estimate of $\square y z^{\vee}$ (the thing that was supposed to be zero) was twice the size of the projected experimental uncertainty of the $Q_{\text {weak }}$ experiment.
- People got busy.

Vector box plots today

Hall et al.
PRD 88, 013011 (2013)

Carlson and Rislow

PRD 83, 113007 (2011)

Gorchtein et al.
PRC 84, 015502 (2011)

\[

\]

- Central values close
- Differences come from the treatment of the structure functions
- BTW, we combined errors directly, Hall et al. in quadrature. Could repeat:

\[

\]

Why not be happy?

- Where from came results?
- Resonance contributions: basically from fit of Bosted and Christy for $\mathrm{F}_{\mathrm{i}}{ }^{\gamma \gamma}$ modified using
- NR quark model (Rislow and me)
- Isospin rotations and neutron data (GHRM, Hall et al.), getting p / n ratio from PDG, finessing Q^{2} dependence
- As above, getting resonant amplitudes and Q^{2} dependence from MAID fits (Rislow and me, later attempt)

Data plots and functions

- The Bosted-Christy fits are good. Sample:
- 2nd plot shows difference $\mathrm{Fi}_{\mathrm{i}}{ }^{r y}$ to $\mathrm{F}_{\mathrm{i}}{ }^{r Z}$

Note on isospin rotations

- Basic relation

$$
2\left\langle R^{+}\right| J_{\mu}^{Z_{V}}|p\rangle=\left(1-4 \sin ^{2} \theta_{W}\right)\left\langle R^{+}\right| J_{\mu}^{\gamma}|p\rangle-\left\langle R^{0}\right| J_{\mu}^{\gamma}|n\rangle-\left\langle R^{+}\right| \bar{s} \gamma_{\mu} s|p\rangle
$$

- Neglect contribution of strange quark (A4, GO, HAPPEX)
- Need two things: Proton electromagnetic matrix elements
- GHRM get them from identifiable resonance terms in Christy-Bosted fit
- (as we did also)
- and then need neutron matrix elements. GHRM obtain matrix elements at $Q^{2}=0$ from PDG, form n / p ratios, and then use above relation. Omitted Q^{2} dependence in n / p ratios.
- Can also get resonance electroproduction amplitudes from MAID.
- Above is for resonances. Background, both under (in) resonance region and above resonance region still to be discussed.

Note on non-resonant contributions

- The difficult region is low Q^{2} and high W
- We took Christy-Bosted background, got guidance from scaling region to argue that for the γZ version was between $2 / 3$ and $3 / 3$ of the $\gamma \gamma$ values.
- GHRM took two $\gamma \gamma$ fits to HERA and ZEUS data (much higher energies) and extrapolated to the support region for the present case. Difference between the two extrapolations gave the bulk of their uncertainty.

Think of something!

- Although results similar, they come after doing some integrals, and there are regions where the integrands are fairly different.
- The interference structure functions $F_{i}{ }^{r z}$ actually are measurable. Use Parity Violating Deep Inelastic Scattering (PVDIS).

- PVDIS asymmetry directly depends on $F_{i}{ }^{z Z}$
$A_{P V D I S}=g_{A}^{e} \frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{x y^{2} F_{1}^{\gamma Z}+\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{\gamma Z}+\frac{g_{V}^{e}}{g_{A}^{e}}\left(y-\frac{y^{2}}{2}\right) x F_{3}^{\gamma Z}}{x y^{2} F_{1}^{\gamma \gamma}+\left(1-y-\frac{x^{2} y^{2} M^{2}}{Q^{2}}\right) F_{2}^{\gamma \gamma}}$
- $x=Q^{2} / 2 m_{p} \nu ; y=v / E ; g_{A}{ }^{e}=-1 / 2 ; g^{e}=-1 / 2+2 \sin ^{2} \theta_{\mathrm{W}}$
- with unlimited data can obtain all $F_{i}{ }^{r} Z\left(\nu, Q^{2}\right)$
- with some data, can check other models
- for $\square \gamma{ }^{\vee}$, resonance region dominates integrals

for context-scaling region

- write $F_{i} r^{z}$ in terms of quark distribution functions,

$$
\begin{array}{r}
A_{P V D I S}=\frac{3 G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{2 C_{1 u}\left(u_{A}+\bar{u}_{A}\right)-C_{1 d}\left(d_{A}+\bar{d}_{A}+s_{A}+\bar{s}_{A}\right)+Y\left(2 C_{2 u}\left(u_{A}-\bar{u}_{A}\right)-C_{2 d}\left(d_{A}-\bar{d}_{A}\right)\right)}{4\left(u_{A}+\bar{u}_{A}\right)+d_{A}+\bar{d}_{A}+s_{A}+\bar{s}_{A}} \\
Y(y)=\frac{1-(1-y)^{2}}{1+(1-y)^{2}}, \quad C_{1 q}=2 g_{A}^{e} g_{V}^{q} \quad, \quad C_{2 q}=2 g_{V}^{e} g_{A}^{q}
\end{array}
$$

- Scaling region is $x \rightarrow 1, y \rightarrow 1, Y \rightarrow 1$, antiquark and strange distributions $\rightarrow 0$, and for deuteron, $u_{A}=d_{A}$,

$$
A_{P V D I S}=\frac{3 G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha} \frac{2 C_{1 u}-C_{1 d}+2 C_{2 u}-C_{2 d}}{5}
$$

- The C_{1}^{\prime} 's are better known, can test BSM for C_{2} 's.

PVDIS in res. reg.

- For sparser data case, here are predictions from existing models,
- this is proton target
- $C B=C Q M$ modified Christy-Bosted $\mathrm{F}_{1,2}{ }^{\gamma \gamma}$ fi \dagger

- JLab expt has some public data in scaling region

deuteron predictions and data

- for the deuteron, there is PVDIS data in the resonance region: Wang et al., PRL 111, 082501 (2013)
- Calc: Rislow and me, PRD 85, 073002 (2012), Matsui et al. (2005); Gorchtein et al. (2011); Hall et al (2013).

general statements regarding data

- also want data on proton
- more precise
- useful: lower Q^{2} (few tenths GeV^{2}) and high W. This is where the background disagreements lie.

Summary

- The world is saved-maybe-regarding the γZ corr. to $Q_{\text {weak. }}$
- I.e., $\square_{\gamma z}{ }^{\vee}$ now calculated.
- About (8.1 ± 1.4)\% of $Q_{w}{ }^{p}$ at $E_{\text {elec }}=1.165 \mathrm{GeV}$. Proportional to Eelec.
- Not discussed here: $\square y z^{A}$ also now calculated w/o guesswork certain log terms
- About ($6.3 \pm 0.6 \%$) of $Q_{w}{ }^{p}$ at $E_{\text {elec }}$ threshold. Small dependence on $E_{\text {elec. }}$. Might still like to improve.
- For goal of 1% or better measurement of QWeak (Mesa), energy is about $1 / 6$ of JLab experiment, and corrections and error in $\square_{\gamma z}{ }^{\vee}$ scale with energy.
- PVDIS can help shrink uncertainty limits.

Beyond the end

Cusps and kinks

- A smoother view, albeit from year 2000

Comments on $\square \gamma z^{A}$

- For some of integral, $\mathrm{F}_{3} \gamma z$ is in resonance region. No e.m. analog (parity violating). Get by
- fits to neutrino resonance region data (Lalakulich et al., '06)
- but there is \approx no data
- or by quark modeled modifications of e.m. case.
- Published results (BMT) are with first. Rislow and I have done the second. Not wildly different overall for $\square_{\gamma z}{ }^{A}$ although noticeably different for resonance part alone. Adds to uncertainty.

