Dark Z and Parity Violation

Hooman Davoudias

HET Group, Brookhaven National Laboratory

INTENSE ELECTRON BEAMS WORKSHOP CORNELL UNIVERSITY, JUNE 17-19, 2015 Mostly "Dark" Universe

• Known "visible" matter: \sim 5% of total

- Unknown dark matter (DM): $\sim 27\%$
 - Stable on cosmological time scales
 - Feeble interactions with ordinary matter
 - May be from a dark sector (no direct coupling to SM)
- Analogy with SM: dark sector may contain matter and forces

• Assume a "dark" sector force $U(1)_d$

- Minimal addition that captures key physics
- Mediated by vector boson Z_d of mass m_{Z_d} coupling g_d
- Interaction with SM via mixing
- $m_{Z_d} \lesssim 1$ GeV may be motivated
- DM interpretation of astrophysical data Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008
- May explain 3.6 σ g_{μ} 2 anomaly

 $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 287(80) \times 10^{-11}$

Positrons

(b)

70E

- Ω_{visible} similar to Ω_{DM}
- GeV scale asymmetric DM models
- Efficient conjugate pair annihilation into light Z_d

2

AMS-02

Dark Photon

• Kinetic mixing: Z_d of $U(1)_d$ and B of SM $U(1)_Y$ Holdom, 1986

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B_{\mu\nu} Z_d^{\mu\nu} - \frac{1}{4} Z_{d\mu\nu} Z_d^{\mu\nu}$$

 $X_{\mu\nu} = \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}$

- May be loop induced: $\varepsilon \sim eg_d/(4\pi)^2 \lesssim 10^{-3}$
- Remove cross term, via field redefinition
 - $B_{\mu} \to B_{\mu} + \frac{\varepsilon}{\cos \theta_W} Z_{d\mu}$
 - Z- Z_d mass matrix digonalization
- After redefinition, Z_d couples to EM current $J_{em}^{\mu} = \sum_f Q_f \bar{f} \gamma^{\mu} f + \cdots$

$$\mathcal{L}_{\rm int} = -e \,\varepsilon \, J^{\mu}_{em} Z_{d\mu}$$

- Like a photon, but ε-suppressed couplings: <u>"dark" photon</u>
- Neutral current coupling suppressed by $O(m_{Z_d}^2/m_Z^2) \ll 1$

• Active experimental program to search for dark photon

Pioneering work by Bjorken, Essig, Schuster, Toro, 2009

• An early experimental target: $g_{\mu} - 2$ parameter space Fayet, 2007 (direct coupling) Pospelov, 2008 (kinetic mixing)

Dark Z

HD, Lee, Marciano, 1203.2947

• Z_d may also have mass mixing with SM Z

$$M_0^2 = m_Z^2 \begin{pmatrix} 1 & -\varepsilon_Z \\ -\varepsilon_Z & m_{Z_d}^2/m_Z^2 \end{pmatrix}$$

$$arepsilon_Z = rac{m_{Z_d}}{m_Z}\delta$$

- $\delta \ll {\rm 1}$ a model-dependent parameter
- M_0 leads to Z- Z_d mixing angle ξ given by: $\tan 2\xi \simeq 2 \frac{m_{Z_d}}{m_Z} \delta = 2\varepsilon_Z$
- Induced interactions with kinetic and mass mixing

$$\mathcal{L}_{\text{int}} = \left(-e\varepsilon J_{\mu}^{em} - \frac{g}{2\cos\theta_W}\varepsilon_Z J_{\mu}^{NC}\right) Z_d^{\mu}$$

 $J^{NC}_{\mu} = \sum_{f} (T_{3f} - 2Q_f \sin^2 \theta_W) \overline{f} \gamma_{\mu} f - T_{3f} \overline{f} \gamma_{\mu} \gamma_5 f \quad ; \quad T_{3f} = \pm 1/2 \text{ and } \sin^2 \theta_W \simeq 0.23$

• Neutral current coupling of Z_d like a Z, suppressed by ε_Z : <u>"dark" Z</u>

Notation: Z_d dark photon or dark Z, depending on the context

A Concrete Dark Z Model

- Mass mixing can naturally occur in a 2HDM
- Type I 2HDM: H_1 and H_2 , where only H_1 has $Q_d \neq 0$
 - $U(1)_d$ as protective symmetry for FCNCs instead of the usual \mathbb{Z}_2
 - SM fermions only couple to H_2 (SM-like)
 - Generally, also a dark sector Higgs particle H_d

$$m_Z \simeq rac{g}{2\cos heta_W} \sqrt{v_1^2 + v_2^2}$$
 and $m_{Z_d} \simeq g_d \, Q_d \, \sqrt{v_d^2 + v_1^2}$

• With $\tan\beta = v_2/v_1$ and $\tan\beta_d = v_d/v_1$ we get

$$\varepsilon_Z \simeq (m_{Z_d}/m_Z) \cos\beta\cos\beta_d \Rightarrow \delta \simeq \cos\beta\cos\beta_d$$

• H_1 has $Q_Y Q_d \neq 0 \rightarrow$ generally also expect kinetic mixing

• Additional dark ${\cal Z}$ phenomenology with mass-mixing

HD, Lee, Marciano, 2012

- "Dark" parity violation mediated by light Z_d
 - Atomic parity violation
 - Polarized electron scattering at low Q^2

 $|\delta| \lesssim 10^{-2}$ ($arepsilon \sim 2 imes 10^{-3}$, $m_{Z_d} \sim 100$ MeV)

- Longitudinal Z_d enhancement $\sim E/m_{Z_d}$
 - $Z_{d,long}$ with $m_{Z_d} \ll E$: Goldstone equivalence theorem
 - Effects from flavor physics: $K \to \pi Z_d, \ B \to K Z_d \to |\delta| \lesssim 10^{-3}$

 $Br(K^+ \rightarrow \pi^+ Z_d)_{long} \simeq 4 \times 10^{-4} \delta^2$; $Br(B \rightarrow KZ_d)_{long} \simeq 0.1 \delta^2$

- High energy data, e.g. rare Higgs decay $H \to ZZ_d$ $(m_{Z_d} \ll m_Z)$, on-shell Z_d)

1505.07645, ATLAS Collaboration

- In 2HDM realization there could be other signals
- Dominant $H^{\pm} \rightarrow W^{\pm} Z_d$ (tree-level) for $m_{H^{\pm}} \lesssim m_t$

HD, Marciano, Ramos, Sher, 2014 Lee, Kong, Park, 2014

Dark Z and Parity Violation

• Low Q^2 (< $m_{Z_d}^2$) parity violation from $Z - Z_d$ mixing

• Z_d effects can be parameterized by HD, Lee, Marciano, 2012

$$G_F \to \rho_d G_F$$
 and $\sin^2 \theta_W \to \kappa_d \sin^2 \theta_W$

with
$$\rho_d = 1 + \delta^2 \frac{m_{Z_d}^2}{Q^2 + m_{Z_d}^2}$$
 and $\kappa_d = 1 - \varepsilon \frac{m_Z}{m_{Z_d}} \delta \frac{\cos \theta_W}{\sin \theta_W} \frac{m_{Z_d}^2}{Q^2 + m_{Z_d}^2}$

• Leads to variation of $\sin^2 \theta_W$ with Q^2 :

$$\Delta \sin^2 \theta_W(Q^2) = -\varepsilon \delta \frac{m_Z}{m_{Z_d}} \sin \theta_W \cos \theta_W f\left(Q^2/m_{Z_d}^2\right)$$

$$f\left(Q^2/m_{Z_d}^2\right) = 1/(1+Q^2/m_{Z_d}^2)$$

Measurements of $\sin^2 \theta_W$

E.g., Kumar, Mantry, Marciano, Souder, 1302.6263

- SM Prediction (EW fit): $\sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} = 0.23124(12)$
- Cs APV: $\sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} = 0.2283(20)$ at $\langle Q \rangle \simeq 2.4$ MeV
- E158 (Moller): $\sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} = 0.2329(13)$ at $\langle Q \rangle \simeq 160$ MeV
- NuTeV ($\nu_{\mu}N$): $\sin^2 \theta_W(m_Z)_{\overline{MS}} = 0.2356(16)$ at $\langle Q \rangle \simeq 5$ GeV
- Weighted average:

$$\langle \sin^2 \theta_W(m_Z)_{\overline{\mathsf{MS}}} \rangle = 0.2328(9)$$

• Low Q^2 data $\Rightarrow \sim 1.8 \sigma$ deviation

Current Results and Future Prospects

• Black curve: SM running

Marciano, Sirlin, 1981; Czarnecki, Marciano, 1996

10

$\sin^2 heta_W$ Deviation and Z_d

- Deviation: potential faint indication of new physics?
- Fit could be improved with a Z_d
- NuTeV $\langle Q \rangle \simeq$ 5 GeV: intermediate scale Z_d
- \bullet Let us consider the range $\sim 10-35~GeV$ HD, Lee, Marciano, work in progress
- Set $g_{\mu} 2$ aside
- Beyond reach of low energy direct search (flavor, fixed target, ...)
- Range motivated by rare Higgs decay $H \rightarrow ZZ_d$ kinematics
- EW precision constraints: $\varepsilon \lesssim 0.03$ E.g., Curtin, Essig, Gori, Shelton, 2014
- Mass mixing $\delta' \equiv \delta + \varepsilon \left(m_{Z_d} / m_Z \right) \tan \theta_W$

•
$$\delta'^2 \lesssim \frac{10^{-4}}{\text{Br}(Z_d \to \ell^+ \ell^-)}$$
 (at 2σ) from $H \to ZZ_d$ search ATLAS, 2015

From G. Aad et al. [ATLAS Collaboration], arXiv:1505.07645 [hep-ex]

• $Br(Z_d \rightarrow \ell^+ \ell^-) \sim 0.3$ for $Br(Z_d \rightarrow SM) = 1$

• Br may be $\ll 0.3$ if Z_d can decay into $U(1)_d$ charged (DM) states

HD, Lee, Marciano, work in progress

- $\varepsilon \delta' < 0$ range corresponds to 1 σ band for $\sin^2 \theta_W$ deviation
- The upper region of the band: tension with constraints
- Interesting implications for planned experiments at different Q^2
- Near future: Q_{weak} results can shed further light on this scenario

A tenuous hint from ATLAS $H \rightarrow Z_d Z_d$ search?

From G. Aad et al. [ATLAS Collaboration], arXiv:1505.07645 [hep-ex]

- Lower (higher) mass event from 4 μ (4e); each 1.7 σ (local)
- Higgs mixing with a dark scalar (Higgs) with $Q_d \neq 0$

Concluding Remarks

- Dark sector may have its own forces, mediated by dark bosons
- Minimal example: Z_d from a $U(1)_d$
- The new bosons may be light, but weakly coupled to SM
- Kinetic mixing: dark photon
- Simple extension that could address $g_{\mu}-2;~m_{Z_d} \lesssim 1$ GeV
- A great deal of experimental activity
- Mass-mixing with Z: dark Z
- New low energy source of parity violation
- Induces shift, as a function of Q^2 , in $\sin^2 \theta_W$
- Opportunities for polarized electron scattering experiments
- Potential correlated signals in rare Higgs decays
- Intermediate $m_{Z_d} \sim 10-35$ GeV an interesting target (deviations in $\sin^2 heta_W$)