Qweak + Torroidal Spectrometer Spectrometer Options

(+ Kinematics, Backgrounds and Technology for a Next Generation Q^pweak Measurement)

IEB Workshop – Cornell 6/18/2015

Thomas Jefferson National Accelerator Facility

The Qweak Collaboration

97 collaborators23 grad students10 post docs23 institutions

Institutions:

- ¹ University of Zagreb ² College of William and Marv ³ A. I. Alikhanvan National Science Laboratory ⁴ Massachusetts Institute of Technology ⁵ Thomas Jefferson National Accelerator Facility ⁶ Ohio University ⁷ Christopher Newport University ⁸ University of Manitoba, ⁹ University of Virginia ¹⁰ TRIUMF ¹¹ Hampton University ¹² Mississippi State University ¹³ Virginia Polytechnic Institute & State Univ ¹⁴ Southern University at New Orleans ¹⁵ Idaho State University ¹⁶ Louisiana Tech University ¹⁷ University of Connecticut
 - ¹⁸ University of Northern British Columbia
 - ¹⁹ University of Winnipeg
 - ²⁰ George Washington University
 - ²¹ University of New Hampshire
 - ²² Hendrix College, Conway
 - ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵
F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5, 2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,²
J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,² T. Forest,^{15, 16} D. Gaskell,⁵
M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷
M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,^{6, 2}, L. Lee,¹⁰
S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,¹³, J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵
A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹
Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵
J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵
P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8}
B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

Spokespersons Project Manager Grad Students

Jlab Accelerator Complex

- Superconducting RF Accelerators
- Continuous e⁻ beam (499 MHz)
- 4 Experimental Halls
- 12 GeV Upgrade Almost Complete

Qweak: Current Status

- Experiment finished successfully:
 - Most precise measure of ep scattering asymmetry
 - 2 years in situ, ~1 year of integrated beam
 - Commissioning run published (PRL 111, 141803 (2013))
 - ~ 1/25th of total data collected

- 1^{st} Determination of $Q_w(p)$, C_{1u} , C_{1d} , & $Q_w(n)$

- Remainder of experiment still being analyzed
 - Expect final result ~ early next year
 - Expect final asymmetry will have ~5 x better precision
 - Experimental apparatus described in NIM A781, 105 (2015)

The Weak Charges

 $Q_w(p)$ is the neutral-weak analog of the proton's electric charge $Q_w(p)$ is particularly sensitive to the quark vector coupling $C_{1u} \& C_{1d}$

	Q _{EM}	Weak Vector Charge	
u quark	2/3	$-2C_{1u}=1-\frac{8}{3}\sin^2\theta_w\approx 1/3$	A V e e
d quark	-1/3	$-2C_{\rm 1d} = -1 + \frac{4}{3}\sin^2\theta_w \approx -2/3$	
p (uud)	+1	$1-4\sin^2\theta_w pprox 0.07$	$C_{1i} \equiv 2g_A^e g_V^i \qquad C_{2i} \equiv 2g_V^e g_A^i$
n (udd)	0	≈ -1	Small scattering Large scattering
• •			angles angles

- General: $Q_w(Z,N) = -2\{C_{1u}(2Z + N) + C_{1d}(Z + 2N)\}$
 - $Ex: Q_w(p) = -2(2C_{1u} + C_{1d}) \quad (\underline{this experiment})$
 - Uses higher Q² PVES data to constrain hadronic corrections (about 20%)
 - $\text{Ex: } \mathbf{Q}_{w}(^{133}\text{Cs}) = -2(188C_{1u} + 211C_{1d})$ (APV)

• Latest atomic corrections from PRL 109, 203003 (2012)

• Combining $Q_w(p)$ and $Q_w(^{133}Cs) \rightarrow C_{1u} \& C_{1d}, Q_w(n)$

Complementarity Between Weak Charges of Proton & Electron

The Qweak Experiment Methodology

Extracting
$$Q_{W}(p)$$

$$\sum_{e} B_{W}(p) + \sum_{e} B_{W}(p) + \sum_{e} B_{W}(p) + \sum_{e} B_{W}(p) + \sum_{e} B_{W}(p)$$
• $A_{ep} = \left[\frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}\right] \sim \frac{|M_{Weak}^{PV}|}{|M_{EM}|}$ where σ^{\pm} is $e^{\pm}p$ x-sec for e's of helicity ± 1
• $A_{ep} = \left[\frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}}\right] \frac{eG_{E}^{Y}G_{E}^{Z} + \tau G_{M}^{Y}G_{M}^{Z} - (1 - 4\sin^{2}\theta_{W})e'G_{M}^{Y}G_{A}^{Z}}{\epsilon(G_{E}^{Y})^{2} + \tau(G_{M}^{Y})^{2}}$
- where $\epsilon = [1 + 2(1 + \tau)\tan^{2}(\theta/2)]^{-1}$, $\epsilon' = \sqrt{\tau(1 + \tau)(1 - \epsilon^{2})}$,
 $\tau = Q^{2}/4M^{2}$, $G_{E,M}^{Y}$ are EM FFs, $G_{E,M}^{Z}$ & G_{A}^{Z} are strange & axial FFs,
and $\sin^{2}\theta_{W} = 1 - (M_{W}/M_{Z})^{2}$ = weak mixing angle
• Recast $A_{ep} = \frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} [Q_{W}^{p} + Q^{2}B(Q^{2}, \theta)]$
- So in a plot of $A_{ep}/\left[\frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}}\right]$ vs Q^{2} : 73% 26%
• $B(Q^{2}, \theta)$ is the intercept (anchored by precise data near Q^{2}=0)
• $B(Q^{2}, \theta)$ is the slope (determined from higher Q^{2} PVES data)

Experimental Apparatus

Used only during low current tracking mode operation

Experimental Apparatus

Used only during low current tracking mode operation

Experimental Apparatus

Used only during low current tracking mode operation

Measurement Process

"Helicity windows" occur at 960 Hz

Groups of four windows have helicity pattern:

[+--+] or [-++-]

chosen pseudo randomly

Helicity reporting is delayed to prevent real time electrical pickup.

- Detector and beam monitor signals are integrated over the window (gate).
- Asymmetries are constructed for each pattern.

Target Performance

$$\Delta A_{qrt} = \sqrt{\left(\sigma_{fixed}\right)^2 + \left(\sigma_{tgt}\right)^2}$$

Where ∆A_{qrt} is measured main detector asymmetry width (over each helicity quartet)

<u>Measured</u> helicity correlated target noise: With 2.2 kW of beam heating! At 960 Hz reversal rate, the target noise (~50 ppm) is small compared to our measured helicity quartet ($\pm_{\mp\mp}\pm$) asymmetry width ΔA_{qrt} (~230 ppm). (statistical power ~ $\Delta A_{qrt}/\sqrt{N_{qrts}}$).

QTOR Magnet

- Manitoba / TRIUMF / MIT-Bates / JLab
- Open geometry resistive toroid, for maximum solid angle acceptance
- Eight water cooled, dble pancake coils
- Separates elastics from inelastics at focus

3-axis Mapper

150 V, 9100 A

Quartz Cerenkov Detectors

Determining the Kinematics

-80 -100

radial position x:cm

Beam Properties & Corrections A_{reg} = -35 ± 11 ppb

Corrections and Uncertainties: (for commissioning data result)

UNITS: parts per billion (ppb)

$$A_{msr} = A_{raw} + A_T + A_L - A_{reg}$$

$$A_{msr} = -204 \pm 31 (stat) \pm 13 (sys)$$

$$A_T = 0 \pm 4$$

$$A_L = 0 \pm 3$$

$$A_{reg} = -35 \pm 11$$
- 10 correction to A_{raw}

$$A_{ep} = \left(\frac{R_{tot}}{P(1 - f_{tot})}\right) \times \left(A_{msr} - P\sum_{i=1}^{4} f_i A_i\right)$$

 f_i : fraction of light from background i $f_{tot} = \Sigma f_i = 3.6\%$

R: product of factors ~ unity: (Rad. corr, kinematics, detector response)

 $A_{ep} = -279 \pm 35 (stat) \pm 31 (sys)$ $R_{TOT} / (P(1-f_{tot})) = 1.139$ $P f_i A_i = -51 + 11 + 0 + 1 = -39$ (Al windows + beamline bgd. + soft neutrals + inelastic)

Global PVES Fit Details: (for commissioning result)

- 5 free parameters Young, et al. PRL 99, 122003 (2007):
 - (C_{1u}, C_{1dv}) $\rho_s, \mu_s, \&$ isovector axial FF G_A^Z
 - $G_E^S = \rho_s Q^2 G_D$, $G_M^S = \mu_s G_D$, & G_A^Z use G_D where • $G_D = (1 + Q^2/\lambda^2)^{-2}$ with $\lambda = 1$ GeV/c
- Employs all PVES data up to Q²=0.63 (GeV/c)²
 - On p, d, & ⁴He targets, forward and back-angle data
 - SAMPLE, HAPPEX, G0, PVA4 & this expt. (Qweak):
- Uses constraints on isoscalar axial FF G^Z_A
 - Zhu, et al., PRD 62, 033008 (2000)
- All ep data corrected for E & Q² dependence of \Box_{vz} RC
 - Hall et al., PRD88, 013011 (2013) & Gorchtein et al., PRC84, 015502 (2011)
- Effects of varying Q^2 , θ , & λ studied, found to be small

Note: $Q_{w} = -2(2C_{1u} + C_{1d})$

Electroweak Corrections

 $Q_W^p = [\rho_{\rm NC} + \Delta_e][1 - 4\sin^2\hat{\theta}_{\rm W}(0) + \Delta'_e] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$

Measured Asymmetry (rotated to \theta=0^{\circ})

 $A_{PV} = -279 \pm 35$ (statistics) ± 31 (systematics) ppb $<Q^2> = 0.0250 \pm 0.0006$ (GeV/c)² $<E> = 1.155 \pm 0.003$ GeV

25

Qweak Commissioning Run - PRL 111,141803 (2013)

25x more production data still being analyzed, final result 2015

Global fit of Q² < 0.63 (GeV/c)² PVES Data

First Results: Weak Mixing Angle

Qweak - 25x More Data in Runs 1 & 2 to Un-blind!

Qweak Run 2 - Blinded Asymmetries

(statistics only - not corrected for beam polarization, AI target windows, ΔQ^2 , etc.)

Sensitivity to EM FFs

- Use "theory point" A = -213.9 ± 4.1 ppb at our kinematics
 - Perform Q_w(p) PVES fits for each of 4 EMFF fits:
- EMFF Fit
 Q^pw
 dQ^pw

 Arrington & Sick
 0.0705
 0.0023

 Kelly
 0.0702
 0.0023

 Simple Dipole
 0.0702
 0.0022

 Friedrich & Walcher
 0.0683
 0.0022

- No difference
- Studied impact of "worst case uncertainty" estimate of EMFF's
 - Use Arrington & Sick EMFF fit
 - Low Q², 2γ, careful treatment of correlations, more recent...
 - Do Q_w(p) PVES fit 1000 times, varying EMFF's within their errors using the "theory point"
 - Width of distribution only 1.6%

J. Friedrich and Th. Walcher. EPJ A 17(4):607–623, 2003.
J. Kelly. Phys. Rev. C, 70:068202, 2004
John Arrington and Ingo Sick. Phys. Rev. C, 76:035201, 2007.

SM Tests: Past & Future Precision Low Energy Parity Violation Measurements

 $\Lambda/g_{new physics}$ for 95% CL using formalism of Erler, et.al.- arXiv:1401.6199v1 [hep-ph] 23 Jan 2014

Experiment	% Precision	$\Delta sin^2 \theta_w$	Λ <i>/g</i> [TeV]	θ	Status
SLAC-E122	8.3	0.011	1.5	9.4°	published
SLAC-E122	110	0.44	0.25	99.4°	published
APV (²⁰⁵ Tl)	3.2	0.011	3.8	75.6°	published
APV (¹³³ Cs)	0.58	0.0019	9.1	74.9°	published
SLAC-E158	14	0.0013	4.8	-	published
Jlab-Hall A	4.1	0.0051	2.2	26.2°	published
Jlab-Hall A	61	0.051	0.82	116.2°	published
JLab-Qweak (~3 days)	19	0.0030	4.8	53.1°	published
JLab-Qweak (full)	4.5	0.0008	9.3	53.1°	2015
JLab-SoLID	0.6	0.00057	6.2	53.1°	seeking funded
JLab-MOLLER	2.3	0.00026	11.0	-	seeking funded
Mainz-P2	2.0	0.00036	13.8	53.1°	funded (>2020)
APV (²²⁵ Ra+)	0.5	0.0018	9.6	75.7°	
APV (²¹³ Ra ⁺ / ²²⁵ Ra ⁺)	0.1	0.0037	4.5	55.5°	
PVES (¹² C)	0.3	0.0007	14	71.6°	

Summary: Measurements of sin² $\theta_{W(effective)}$

New Physics Scenarios – A Recent Example

"Dark photon" – possible portal for new force to communicate with SM

- Astrophysical motivation: observed excess in positron data.
- Could explain muon g-2 anomaly?

"Dark parity violation" (Davoudiasl, Lee, Marciano, arXiv 1402.3620)

- Introduces a new source of low energy parity violation through mass mixing between Z and Z_d with observable consequences.
- Complementary to direct searches for heavy dark photons.

Qweak Apparatus Reused at Lower Energy

What might be achievable by re-using the Qweak apparatus at lower beam energy for a much lower Q² measurement of the proton's weak charge?

Monte Carlo studies by Juliette Mammei and Kurtis Bartlett (using Qweak apparatus with same relative target/collimators/spectrometer postions, etc.) indicates there is a focus at lower energies (200 MeV to 600 MeV).

Figure-of-Merit for Torroid Spectrometer

The relative FOM for e-p elastic scattering at forward angles for:

- Fixed running time
- Fixed angular acceptance
- Fixed target length
- Fixed beam current

The FOM is [A x $\sigma^{1/2}$] where A = asymmetry and σ = cross section integrated over experimental acceptance.

Since $A \sim Q^2 \sim E^2$ and sigma $\sim E^2/Q^4 \sim 1/E^2$

To zeroth order FOM ~ E, is basically independent of energy in this region - modified slightly for the B term magnitude and form factor variation.

Other significant factors include the handicap of dealing with a "very small asymmetry" with respect to helicity-correlated beam parameters and other false asymmetries) that drives the beam energy choice.

Q² for 0.3 GeV, 0.5 GeV & 1.16 GeV

Projections for Using Qweak Apparatus at 600 MeV

Projected rates/asymmetries for standard Qweak apparatus at 600 Mev: Case A: standard 2.5 kW LH₂ target; Case B: 3.8 kW LH₂ target

Parameter	MESA P2 [*]	Q-weak 600, case A	Q-weak 600, case B	
E _{beam}	200 MeV	600 MeV	600 MeV	
Time	10000 hours	10000 hours	10000 hours	
Current	150 μA	200 μA	300 μA	
LH ₂ Target Length	60 cm	35 cm	35 cm	
Polarization	85%	85%	85%	
Central θ	20 [°]	8°	8°	
<q<sup>2 ></q<sup>	.0029 GeV ²	.0065 GeV ²	.0065 GeV ²	
Total rate	440 GHz	30 GHz	44 GHz	
Asym. Width @240 Hz	23 ppm	89 ppm	74 ppm	
A _{phys} (ppb)	-20 ppb	-46 ppb	-46 ppb	
Hadronic "B" term	9%	10%	10%	
ΔA (stat)	0.25 ppb (1.2%)	0.96 ppb (2.1%)	0.79 ppb (1.7%)	
ΔA (syst)	0.19 ppb (0.9%)	0.41 ppb (0.9%)	0.41 ppb (0.9%)	
ΔA (tot)	0.34 ppb (1.7%)	1.20 ppb (2.6%)	1.01 ppb (2.2%)	
ΔQ_W^p	0.0014 (2.0%)	0.0021(3.0%)	0.0019 (2.6%)	
$\Delta sin^2 \theta_W$	3.6x10 ⁻⁴ (0.15%)	5.4x10 ⁻⁴ (0.23%)	4.7x10 ⁻⁴ (0.20%)	

* MESA P2 parameters come from F. Maas talk at "Dark Forces at Accelerators" Frascati, Oct. 2012

"Teaser + a Lower Q² Point"

Conclusions

- The Jlab Qweak will be the first direct high precision measurement of the weak charge of the proton, but we always want more precision to continue testing the SM.
- A <u>non-optimized</u> estimate of for reusing the existing Qweak torroidal magnet apparatus at ~600 MeV beam energy indicates that a precision determination of Q^p_W at Q² ~ .0065 (GeV/c)² and lower appears possible with sufficient running time.
- This option allows use of conventional polarimetry technology (Compton / backscattered laser) and other beamline instrumentation.
- Keeps the asymmetry as large as possible, but still low enough to suppress hadronic uncertainties to a safe level. This is the ideal figure-of-merit.
- Reduces the difficulty of helicity-correlated beam property suppression / control when trying to go to sub-ppb asymmetry precision.
- As a "bonus" there is no concern with polarizing of the LH₂ production target or its windows when using a torroidal spectrometer.

Outlook

