IEB-Workshop, June 17-19 2015, Ithaca, NY, USA

## Monte Carlo simulations of a solenoid spectrometer for Project P2

D. Becker, K. Gerz, T. Jennewein, S. Baunack, K. S. Kumar, F. E. Maas

Institute for Nuclear Physics, JGU Mainz

## Outline

- Project P2 @ MESA:

A new high precision determination of the electroweak mixing angle at low momentum transfer

- P2 main dector concept: Monte Carlo simulations of a solenoid spectrometer
- Monte Carlo simulations regarding a precision measurement of the weak mixing angle at higher beam energies and beam current

Monte Carlo is all about probability...

## The global situation



## Project P2 @ MESA:

- New high precision determination of the proton weak charge $\mathrm{Q}_{\mathrm{w}}(\mathrm{p})$ at low $\mathrm{Q}^{2} \sim 6 \cdot 10^{-3} \mathrm{GeV}^{2} / \mathrm{c}^{2}$
- Precision goal: $\Delta \mathrm{Q}_{\mathrm{w}}(\mathrm{p})=1.9 \%$
$\Delta \sin ^{2} \theta_{w}=0.15 \%$
- Measurement of $\mathrm{Q}_{w}(\mathrm{p})$ through parity violation in elastic e-p scattering


## Access to the weak mixing angle

$$
\begin{aligned}
& h=\frac{\vec{s} \cdot \vec{p}}{|\vec{s} \cdot \vec{p}|}= \pm 1 \\
& \text { e } \\
& A^{P V}=\frac{-G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\left[Q_{W}(p)-F\left(Q^{2}\right)\right]
\end{aligned}
$$

Parity violating asymmetry, averaged over solid angle


- $Q_{w}(p)$ : Proton weak charge, $Q_{w}(p)=1-4 \cdot \sin ^{2}\left(\theta_{w}\right)$ (tree level)
- $F\left(Q^{2}\right)$ : Nucleon structure contribution, small at low $Q^{2}$
$A^{P V} \sim \sin ^{2} \theta_{W}$


## Prediction of achievable precision and choice of kinematics

- Monte Carlo approach to error propagation calculation
- Assumption of back angle measurement of axial and strange magnetic form factor in P2
$\rightarrow$ Reduction of form factor uncertainty by factor 4
- $\mathrm{A}^{\mathrm{PV}}=-39.80 \mathrm{ppb}$

$$
\pm 0.54 \mathrm{ppb} \text { (stat.) }
$$

$$
\pm 0.34 \mathrm{ppb} \text { (other) }
$$



$$
\begin{array}{ll}
\Delta \sin ^{2}\left(\theta_{w}\right)=3.2 \cdot 10^{-4}(0.13 \%) @ \begin{array}{l}
\text { Central scattering angle: } \\
\\
\\
\text { Detector acceptance: }
\end{array} \quad \begin{array}{l}
35 \mathrm{deg} \\
20 \mathrm{deg}
\end{array}
\end{array}
$$

Beam energy:
150 MeV

## The new M.E.S.A. facility in Mainz



## Mainz Energy recovering

 Superconducting Accelerator:- Normal-conducting injector LINAC
- Energy recovering mode: Unpolarized beam, $10 \mathrm{~mA}, 100 \mathrm{MeV}$, pseudo-internal gas-target, $\mathrm{L} \sim 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- External beam mode: $P=85 \% \pm 0,5 \%$, $150 \mu \mathrm{~A}, 155 \mathrm{MeV}, \mathrm{L} \sim 10^{39} \mathrm{~cm}^{-2} \mathrm{~s}^{-1},\left\langle\Delta \mathrm{~A}_{\mathrm{app}}\right\rangle_{\Delta t}=0.1 \mathrm{ppb}$


## Experimental setup under investigation



## Raytrace simulations in the magnetic field



## Geant4 Simulation of beam-target-interaction

Radial projection of spatial vertex distribution


Energy deposition in target volume


- Coherent simulation of elastic e-p scattering for P 2 is impossible with Geant4
- Sample initial state distribution for elastic e-p scattering
$\rightarrow$ To be used with event generator
- Use tree-level event generator for primary event-generation
- Prototype of event generator with radiative corrections available and currently under evaluation


## Geant4 Simulation of detector module response

Tracking of optical photons in detector module


Photo electron yield distribution, E = 155 MeV


Create parametrization of photo electron yield for different

- Active materials
- Geometries
- Particle types
- Particle energies
- Impact angles


## Geant4 Simulation of experimental setup

Photo electron rate distribution


Q ${ }^{2}$ distribution of elastically scattered electrons


- Use initial state distribution with tree level event generator to simulate elastic e-p scattering
- Tracking in realistic map of magnetic field, CAD-interface for definition of geometry
- Use parametrization of detector response to predict distribution of photo electrons
- Use Q ${ }^{2}$ distribution in error propagation calculation to predict the achievable precision in the weak mixing angle


## Facts and Figures

The following results are based on error propagation calculations including the results of the Geant4 simulation of the experimental setup:

| Beam energy | 155 MeV |  |
| :---: | :---: | :---: |
| Beam current | $150 \mu \mathrm{~A}$ |  |
| Polarization | $85 \%$ | $\pm 0.425 \%$ |
| Target | 60 cm | liquid hydrogen |
| Detector acceptance | $2 \pi \cdot 20^{\circ}$ | $\theta \in\left[25^{\circ}, 45^{\circ}\right]$ |
| Detector rate | 0.5 THz |  |
| Measurement time | $1 e 4 \mathrm{~h}$ |  |
| $<$ Q $^{2}>$ | $4.49 \mathrm{e}-3 \mathrm{GeV} / \mathrm{c}^{2}$ |  |
| $\mathbf{A}^{\exp }$ | -28.35 ppb |  |


| Total | Statistics | Polarization | Apparative | Form <br> factors | $\operatorname{Re}\left(\square_{y z A}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\Delta} \boldsymbol{\operatorname { s i n }}^{2}\left(\boldsymbol{\theta}_{w}\right)$ | $3.1 \mathrm{e}-4$ | $2.6 \mathrm{e}-4$ | $9.7 \mathrm{e}-5$ | $7.0 \mathrm{e}-5$ | $1.4 \mathrm{e}-4$ | $6 \mathrm{e}-5$ |
|  | $(0.13 \%)$ | $(0.11 \%)$ | $(0.04 \%)$ | $(0.03 \%)$ | $(0.04 \%)$ | $(0.03 \%)$ |
| $\boldsymbol{\Delta} \mathbf{A}^{\text {exp }} \mathbf{l} \mathbf{p p b}$ | 0.44 | 0.38 | 0.14 | 0.10 | 0.11 | 0.09 |
|  | $(1.5 \%)$ | $(1.34 \%)$ | $(0.49 \%)$ | $(0.35 \%)$ | $(0.38 \%)$ | $(0.32 \%)$ |

## Achievable precision @ higher energies/beam current

Beam current:
Polarization:
Target material:
Target:
Measurement time:
Detector acceptance:
$\Delta \mathrm{A}^{\text {app }:}$

Beam energy: 300 MeV
Central scattering angle: $19^{\circ}$
$A^{P V}=(-30.8 \pm 0.34) ~ p p b$
$\left\langle Q^{2}\right\rangle=4.84 \mathrm{e}-3 \mathrm{GeV}^{2} / \mathrm{c}^{2}$
Rate elastic e-p: 1.8 THz


1 mA
$85 \% \pm 0.425 \%$
liquid hydrogen
60 cm
10000 h
$2 \pi \cdot 20^{\circ}$
0.1 ppb

Beam energy: 500 MeV
Central scattering angle: $14^{\circ}$
$A^{P V}=(-24.8 \pm 0.36) ~ p p b$
$\left\langle Q^{2}\right\rangle=3.82 \mathrm{e}-3 \mathrm{GeV}^{2} / \mathrm{c}^{2}$
Rate elastic e-p: 3.6 THz


## A very first idea for 300 MeV

| Beam energy: $\mathbf{3 0 0} \mathrm{MeV}$ |
| :--- | :--- |
| Beam current : $\mathbf{1 5 0} \boldsymbol{\mu A}$ |
| Central magnetic field: $\mathbf{1 . 8} \mathbf{~ T e s l a}$ |
| Moller, $\quad \theta \in\left[0^{\circ}, 90^{\circ}\right]$ |
| Elastic e-p, $\theta \in\left[9^{\circ}, 29^{\circ}\right]$ |
| Elastic e-p, $\theta \in\left[0^{\circ}, 90^{\circ}\right]$ |



## A very first idea for 500 MeV

| Beam energy: 500 MeV |
| :--- |
| Beam current: $\mathbf{1 5 0} \boldsymbol{\mu \mathrm { A }}$ |
| Central magnetic field: $\mathbf{3}$ Tesla |
| Moller, $\quad \theta \in\left[0^{\circ}, 90^{\circ}\right]$ |
| Elastic e-p, $\theta \in\left[4^{\circ}, 24^{\circ}\right]$ |
| Elastic e-p, $\theta \in\left[0^{\circ}, 90^{\circ}\right]$ |



## Summary

- Project P2 @ MESA:

A new measurement of the weak mixing angle with precision goal:
$\Delta Q_{w}(p)=1.9 \%$
$\Delta \sin ^{2} \theta_{w}=0.15 \%$

- P2 main detector concept study: Solenoid spectrometer and $2 \pi$-Cherenkov-detector
$\rightarrow \Delta \sin ^{2} \theta_{\mathrm{w}}=0.13 \%$
- Measurement at higher beam energies and beam current:
$\rightarrow$ Very high precision in $\sin ^{2} \theta_{w}$ at small scattering angles for 300 MeV
$\rightarrow$ Most important contributions from gamma-Z-box and form factors
$\rightarrow$ Experiment may be difficult to perform with a solenoid because of small scattering angles
$\rightarrow$ Toroid may be better choice due to lower dependence on counting statistics


## BACKUP SLIDES

## Include simulated response of detector modules



Use results of detector module simulation to transform event rates into photo electron rates:


Event rate distribution:


Monte Carlo results:
$R_{\text {total }}^{e p}=0.19 \mathrm{THz}$

$$
\left\langle A^{P V}\right\rangle_{L, \Delta \Omega}=-39.8 \mathrm{ppb}
$$

Photo electron rate distribution:


Monte Carlo results:

$$
I_{\text {total }}^{\text {cathode }}=1 \mu \mathrm{~A}
$$

$\left\langle A^{P V}\right\rangle_{L, \Delta \Omega}=-33.5 \mathrm{ppb}$

## Weapon of choice: Solenoid or Toroid?



## We would like to use a superconducting solenoid...

## A promising candidate: The FOPI solenoid (GSI, Darmstadt)

- Field strength: 0.6 T
- Coil current: 725 A
- Stored energy:
- Material:
- Cable length: 22.5 km
3.4 MJ
$\mathrm{Cu} / \mathrm{Nb}-\mathrm{Ti}$
- Inner diameter:
2.4 m
- Total length:
- Total weight:
3.8 m
- I-He consumption:
- I-N consumption:
108.7 tons
$0.02 \mathrm{~g} / \mathrm{s}, 0.6 \mathrm{l} / \mathrm{h}$
$3 \mathrm{~g} / \mathrm{s}, 13 \mathrm{l} / \mathrm{h}$ (perm. cooling)
z-component of FOPI fieldmap

r-component of FOPI fieldmap


$$
A^{\exp } \sim \sin ^{2}\left(\theta_{W}\right)
$$

$\longrightarrow \sin ^{2}\left(\theta_{W}\right)=\mathrm{Z}\left(A^{\exp }, A^{a p p}, E, P, L, \Delta \Omega, \operatorname{Re}\left(\square_{\gamma Z}\right),\left\{f_{i}\right\}\right)$

## Monte Carlo approach:

Set of form factor fit parameters

Sample distribution for $\sin ^{2}\left(\theta_{w}\right)$ by assigning Gaussian distributions to each parameter $\zeta_{i} \in\left\{A^{\exp }, A^{a p p}, E, P, L, \Delta \Omega,\left\{f_{i}\right\}\right\}$.

$$
\sin ^{2}\left(\theta_{W}\right)+\delta \sin ^{2}\left(\theta_{W}\right)=\mathrm{Z}\left(\zeta_{i}{ }^{\prime}+\delta \zeta_{i}\right)
$$



# Choice of new weighting function: Detection yield distribution 

$$
\left\langle A^{P V}\right\rangle_{L, \Delta \Omega}=\frac{\int_{0}^{L} d z \int_{\Delta \Omega} d \Omega\left[\left(\frac{d \sigma}{d \Omega}\right)^{R o s} \cdot \epsilon \cdot A^{P V}\right]}{\int_{0}^{L} d z \int_{\Delta \Omega} d \Omega\left[\left(\frac{d \sigma}{d \Omega}\right)^{R o s} \cdot \epsilon\right]}
$$



$$
\epsilon(z, \theta) \equiv \frac{\text { Rate of photo electrons in detector, produced in target at position } \mathrm{z} \text { with angle } \theta}{\text { Event rate according to Rosenbluth formula, produced in target at position } \mathrm{z} \text { with angle } \theta}
$$

Ideal case


Simulation result


## What is the number of detected e-p events?

To determine $\Delta \sin ^{2}\left(\theta_{\mathrm{w}}\right)$, we sample the mapping:

$$
\sin ^{2}\left(\theta_{W}\right)=\mathrm{Z}\left(A^{\exp }, A^{a p p}, E, P, L, \Delta \Omega, \operatorname{Re}\left(\square_{\gamma Z}\right),\left\{f_{i}\right\}\right)
$$

with

$$
\Delta A^{\exp } \approx 1 / \sqrt{N} \quad \text { and } \quad N: \text { Total number of detected e-p events }
$$

$N=\Phi \cdot \rho \cdot T \cdot\left\langle\frac{d \sigma}{d \Omega}\right\rangle_{L, \Delta \Omega} \cdot \Delta L_{\text {eff }} \cdot \Delta \Omega_{\text {eff }} \quad$ with $\quad\left\langle\frac{d \sigma}{d \Omega}\right\rangle_{L, \Delta \Omega}=\frac{\int_{0}^{L} d z \int_{\Delta \Omega} d \Omega\left[\left(\frac{d \sigma}{d \Omega}\right)^{\text {Ros }} \cdot \epsilon\right]}{\int_{0}^{L} d z \int_{\Delta \Omega} d \Omega[\epsilon]}$,


## Prototype tests @ MAMI



Measured the yield of photo electrons for different

- materials
(quartzes, wrappings, lightguids, PMTs)
- geometries
- impact positions
- angles of incidence




## Low $Q^{2}$ ?

$A^{P v}$ is dominated by $Q_{w}(p)$ at low values of $Q^{2}$.

$$
Q^{2}=4 \mathrm{EE}^{\prime} \sin ^{2}\left(\theta_{l a b} / 2\right)
$$

Low Q2: Low beam energy and large angle or vice versa?



Gorchtein, Horowitz, Ramsey-Musolf 1102.3910 [nucl-th]

At low beam energies: Uncertainty of $y$-Z-box contribution to $\sin ^{2}\left(\theta_{w}\right)$ is negligible.

