

IEB-Workshop, June 17-19 2015, Ithaca, NY, USA

Monte Carlo simulations of a solenoid spectrometer for Project P2

D. Becker, K. Gerz, T. Jennewein, S. Baunack, K. S. Kumar, F. E. Maas

Institute for Nuclear Physics, JGU Mainz

<u>Outline</u>

Project P2 @ MESA: A new high precision determination of the electroweak mixing angle at low momentum transfer

- P2 main dector concept: Monte Carlo simulations of a solenoid spectrometer
- Monte Carlo simulations regarding a precision measurement of the weak mixing angle at higher beam energies and beam current

Highest probability

The global situation

Project P2 @ MESA:

- New high precision determination of the proton weak charge $Q_w(p)$ at low Q² ~ 6.10⁻³ GeV²/c²
- Precision goal: $\Delta Q_w(p) = 1.9 \%$ $\Delta sin^2 \theta_w = 0.15 \%$
- Measurement of Q_w(p) through parity violation in elastic e-p scattering

Access to the weak mixing angle

Prediction of achievable precision and choice of kinematics

- Monte Carlo approach to error propagation calculation
- Assumption of back angle measurement of axial and strange magnetic form factor in P2
 - → Reduction of form factor uncertainty by factor 4
- A^{PV} = -39.80 ppb ± 0.54 ppb (stat.) ± 0.34 ppb (other)

Form factor parametrizations: P. Larin and S, Baunack y-Z-box according to: Gorchtein, Horowitz, Ramsey-Musolf 1102.3910 [nucl-th]

 $\Delta \sin^{2}(\theta_{w}) = 3.2 \cdot 10^{-4} (0.13 \%) @ Beam energy: 150 MeV$ Central scattering angle: 35 degDetector acceptance: 20 deg

The new M.E.S.A. facility in Mainz

- <u>Energy recovering mode</u>: Unpolarized beam, 10 mA, 100 MeV, pseudo-internal gas-target, L ~ 10³⁵cm⁻²s⁻¹
- <u>External beam mode</u>: P = 85%±0,5%, 150 μ A, 155 MeV, L ~ 10³⁹ cm⁻²s⁻¹, < Δ A_{app}>_{At} = 0.1 ppb

Experimental setup under investigation

Geant4 Simulation of beam-target-interaction

Energy deposition in target volume

- Coherent simulation of elastic e-p scattering for P2 is impossible with Geant4
- Sample initial state distribution for elastic e-p scattering
 - \rightarrow To be used with event generator
- Use tree-level event generator for primary event-generation
- Prototype of event generator with radiative corrections available and currently under evaluation

Geant4 Simulation of detector module response

Create parametrization of photo electron yield for different

- Active materials
- Geometries
- Particle types
- Particle energies
- Impact angles

Geant4 Simulation of experimental setup

precision in the weak mixing angle

Facts and Figures

The following results are based on error propagation calculations **including** the results of the Geant4 simulation of the experimental setup:

Beam energy	155 MeV	
Beam current	150 μΑ	
Polarization	85 %	± 0.425 %
Target	60 cm	liquid hydrogen
Detector acceptance	2π·20°	θ ε [25°, 45°]
Detector rate	0.5 THz	
Measurement time	1e4 h	
<q²></q²>	4.49e-3 GeV ² /c ²	
A ^{exp}	-28.35 ppb	

	Total	Statistics	Polarization	Apparative	Form factors	Re(□ _{yzA})
Δsin²(θ _w)	3.1e-4	2.6e-4	9.7e-5	7.0e-5	1.4e-4	6e-5
	(0.13 %)	(0.11 %)	(0.04 %)	(0.03 %)	(0.04 %)	(0.03 %)
ΔA ^{exp} /ppb	0.44	0.38	0.14	0.10	0.11	0.09
	(1.5 %)	(1.34 %)	(0.49 %)	(0.35 %)	(0.38 %)	(0.32 %)

Achievable precision @ higher energies/beam current

Beam current: Polarization: Target material: Target: Measurement time: Detector acceptance: ΔA^{app} :

Beam energy: 300 MeV Central scattering angle: 19° $A^{PV} = (-30.8 \pm 0.34) \text{ ppb}$ $<Q^2> = 4.84e-3 \text{ GeV}^2/\text{c}^2$ Rate elastic e-p: 1.8 THz 1 mA
85 % ± 0.425 %
liquid hydrogen
60 cm
10000 h
2π·20°
0.1 ppb

Beam energy: 500 MeV Central scattering angle: 14° $A^{PV} = (-24.8 \pm 0.36) \text{ ppb}$ $<Q^2> = 3.82e-3 \text{ GeV}^2/\text{c}^2$ Rate elastic e-p: 3.6 THz

<u>A very first idea for 300 MeV</u>

<u>A very first idea for 500 MeV</u>

<u>Summary</u>

• Project P2 @ MESA:

A new measurement of the weak mixing angle with precision goal: $\Delta Q_w(p) = 1.9 \%$ $\Delta sin^2 \theta_w = 0.15 \%$

- P2 main detector concept study: Solenoid spectrometer and 2π -Cherenkov-detector $\rightarrow \Delta sin^2 \theta_w = 0.13 \%$
- Measurement at higher beam energies and beam current:
 - → Very high precision in $sin^2\theta_w$ at small scattering angles for 300 MeV
 - → Most important contributions from gamma-Z-box and form factors
 - → Experiment may be difficult to perform with a solenoid because of small scattering angles
 - → Toroid may be better choice due to lower dependence on counting statistics

BACKUP SLIDES

Include simulated response of detector modules

Use results of detector module simulation to transform event rates into photo electron rates:

Event rate distribution:

10¹⁰ 10¹⁰ Events from elastic e-p scattering: Events from elastic e-p scattering event rate per mm² (s⁻¹*mm⁻²) e. rate per mm² (s⁻¹*mm⁻²) signal electrons (25 deg < θ < 45 deg) signal electrons (25 deg < θ < 45 deg) primary electrons primary electrons secondary electrons secondary electrons 10^{9} 10⁹ secondary photons secondary photons econdary positrons secondary positrons primary protons primary protons 10^{8} 10^{8} Events from target shower reconstruction: Events from target shower reconstruction: electrons electrons photons photons positrons positrons 10^{7} 10^{7} ġ 10^{6} 10^{6} 10⁵ 10⁵ 10⁴ 10^{4} 10³ 10^{3} 500 600 700 800 900 1000 700 800 900 500 600 1000 r (mm) r (mm) Monte Carlo results: Monte Carlo results: $R_{total}^{ep} = 0.19 \,\mathrm{THz}$ $I_{total}^{cathode} = 1 \, \mu A$ $\langle A^{PV} \rangle_{L,\Delta\Omega} = -39.8 \text{ ppb}$ $\langle A^{PV} \rangle_{L,\Delta\Omega} = -33.5 \, \text{ppb}$

Photo electron rate distribution:

Weapon of choice: Solenoid or Toroid?

We would like to use a superconducting solenoid...

A promising candidate: The FOPI solenoid (GSI, Darmstadt)

0.6 T

3.4 MJ

Cu/Nb-Ti

22.5 km

z-component of FOPI fieldmap

- Field strength:
- Coil current: 725 A
- Stored energy:
- Material:
- Cable length:

- Inner diameter:
- Total length:
- Total weight:
- I-He consumption:
- I-N consumption:

- 2.4 m
- 3.8 m
- 108.7 tons
- 0.02 g/s, 0.6 l/h

r-component of FOPI fieldmap

3 g/s, 13 l/h (perm. cooling)

(Courtesy Y. Leifels)

Use fieldmap with Geant4 to simulate the P2 experiment

$$A^{\exp} \sim \sin^2(\theta_W)$$

$$\Rightarrow \sin^2(\theta_W) = Z(A^{exp}, A^{app}, E, P, L, \Delta \Omega, \operatorname{Re}(\Box_{\gamma Z}), \{f_i\})$$

$$f$$
Set of form factor fit parameters

Monte

Sample distribution for $\sin^2(\theta_w)$ by assigning Gaussian distributions to each parameter $\zeta_i \in \{A^{exp}, A^{app}, E, P, L, \Delta\Omega, \{f_i\}\}$.

$$\blacktriangleright \sin^2(\theta_W) + \delta \sin^2(\theta_W) = Z(\zeta_i' + \delta \zeta_i)$$

N sampling-iterations yield $\sin^2(\theta_w)$ -distribution.

Extract $\Delta \sin^2(\theta_{W})$ as standard deviation.

$\langle A^{PV} \rangle_{L, \Delta\Omega} = \frac{\int_{0}^{L} dz \int_{\Delta\Omega} d\Omega [\left(\frac{d\sigma}{d\Omega}\right)^{Ros} \cdot \epsilon \cdot A^{PV}]}{\int_{0}^{L} dz \int_{\Delta\Omega} d\Omega [\left(\frac{d\sigma}{d\Omega}\right)^{Ros} \cdot \epsilon]}$

 $\epsilon(z, \theta) \equiv \frac{\text{Rate of photo electrons in detector, produced in target at position z with angle }{\theta}$ Event rate according to Rosenbluth formula, produced in target at position z with angle θ

What is the number of detected e-p events?

To determine $\Delta \sin^2(\theta_w)$, we sample the mapping:

$$\sin^2(\theta_W) = Z(A^{\exp}, A^{app}, E, P, L, \Delta\Omega, \operatorname{Re}(\Box_{\gamma Z}), \{f_i\})$$

with

 $\Delta A^{\exp} \approx 1/\sqrt{N}$ and *N*: Total number of **detected e-p events**

Prototype tests @ MAMI

Measured the yield of photo electrons for different

- materials (quartzes, wrappings, lightguids, PMTs)
- geometries
- impact positions
- angles of incidence

Low Q²?

 A^{PV} is dominated by $Q_{W}(p)$ at low values of Q^{2} .

$$Q^2 = 4 \text{EE}' \sin^2(\theta_{lab}/2)$$

Low Q²: Low beam energy and large angle or vice versa?

At low beam energies: Uncertainty of γ -Z-box contribution to sin²(θ_{w}) is negligible.