Parity Violation Parallel Sessions

Intense Electron Beam Workshop Ithaca, NY June 17-19, 2015 Convenors: M. Perelstein, K. Paschke

Krishna Kumar	Parity-Violating Electron Scattering: Status and Prospects
Charles Horowitz	Nuclear Weak Form-Factors
Hooman Davoudiasl	Dark Z and Parity Violation
Carl Carlson	Calculations of Gamma-Z Box Diagrams
Oscar Moreno	Nuclear and nucleon structure effects in low- energy parity-violating electron scattering
Roger Carlini	Qweak + Torroidal Spectrometer Options
Dominik Becker	Monte Carlo simulations of a solenoid spectrometer for Project P2
Paul Souder	Carbon with Solenoidal Spectrometer

- Neutron distribution in heavy nuclei
- Strange form factors
- Standard Model tests and beyond Standard Model reach

- Neutron distribution in heavy nuclei
- Strange form factors
- Standard Model tests and beyond Standard Model reach

Qweak

- Neutron distribution in heavy nuclei
- Strange form factors
- Standard Model tests and beyond Standard Model reach

Qweak

- Neutron distribution in heavy nuclei
- Strange form factors
- Standard Model tests and beyond Standard Model reach

Qweak

 $\mathcal{L} \sim 10^{39} \, / \, (s - cm^2)$

- Neutron distribution in heavy nuclei
- Strange form factors

-2000

-1000 -500 0 500 1000 1500 2000 2500 3000 3500

z/mm

- Standard Model tests and beyond Standard Model reach

- Neutron distribution in heavy nuclei
- Strange form factors

-2000

-1000 -500 0 500 1000 1500 2000 2500 3000 3500

z/mm

- Standard Model tests and beyond Standard Model reach

- Neutron distribution in heavy nuclei
- Strange form factors

-2000

-1000 -500 0 500 1000 1500 2000 2500 3000 3500

z/mm

- Standard Model tests and beyond Standard Model reach

- Neutron distribution in heavy nuclei
- Strange form factors
- Standard Model tests and beyond Standard Model reach

Potential of New Machine

for spinless, isoscalar nucleus

New measurements on Carbon-12

- A Standard Model test extremely interesting if 0.3% can be reached
- Must be coupled with higher Q² measurements to constrain strange quark radius (strange quark contribution to charge radius)

New measurements on Calcium-48

- CREX will make a very precise low Q² measurement
- Higher Q² measurements will provide a complete and modelindependent distribution of neutrons in the ground state

Ideal requirements:

several hundred microamps (polarized) with up to 500 MeV
could do quite a bit with 286 MeV and 100 microamps

Neutron Rich Matter

- Compress almost anything to 10¹¹+ g/cm³ and electrons react with protons to make neutron rich matter. This material is at the heart of many fundamental questions in nuclear physics and astrophysics.
 - What are the high density phases of QCD?
 - Where did chemical elements come from?
 - What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations?
- Interested in neutron rich matter over a tremendous range of density and temperature were it can be a gas, liquid, solid, plasma, liquid crystal (nuclear pasta), superconductor (T_c=10¹⁰ K!), superfluid, color superconductor...

Supernova remanent Cassiopea A in X-rays

MD simulation of Nuclear Pasta with 100,000 nucleons

C. Horowitz

Cross section measured over 12 orders of magnitude.

These elastic charge densities **are** our picture of the atomic nucleus!

C. Horowitz

Neutron Skin of Heavy Nuclei

The single measurement of F_n translates to a measurement of rn (via mean-field nuclear models) Skyrme covariant meson covariant point coupling 0.29 ₹0.28 20 ± 0.27 0.28 0.26 (R.J. Furnstahl 0.25 5.6 5.7 5.75 5.8 5.65 $r_n in^{208} Pb$ (fm)

Nuclear theory predicts a neutron "skin" in heavy nuclei

Neutron distribution is not sensitive to the charge-sensitive photon

➔ access through weak charge distribution

	proton	neutron
Electric charge	1	0
Weak charge	~0.08	1

For spin 0 nucleus:

$$A_{PV} = \frac{G_F Q^2}{2\pi\alpha\sqrt{2}} \left[\frac{F_n(Q^2)}{F_p(Q^2)} \right] F_{n,p}(Q^2) = \frac{1}{4\pi} \int d^3r \ j_0(qr) \ \rho_{n,p}(r)$$

- Measurement of R_n in ²⁰⁸Pb calibrates the equation of state in neutron rich nuclear matter (determines density dependence of symmetry energy)
- Applications to neutron stars, heavy ion physics, atomic parity violation

Intense Electron Beams Workshop

^{6/17/2015}

Summer 2017: PREX (3% A_{PV}, r_n to 0.06 fm), CREX (2.5% A_{PV}, r_n to 0.02 fm)

Opportunities: "Super PREX"

Nskin measurement@MESA

Same PREX Luminosity (0.25mm ²⁰⁸Pb) $\Delta \theta = 4^{\circ}$: Rate=9.75 GHz, A_{PV}=0.68×10⁻⁶

1440h → $\delta A_{PV}/A_{PV} = 6.52 \times 10^{-3}$ → $\delta R_n/R_n = 5.04 \times 10^{-3}$ (stat + syst 1%)

C. Sfienti, PAVI-14

Opportunities

Map neutron distribution of ⁴⁸Ca

Opportunities

Map neutron distribution of ⁴⁸Ca

Opportunities

Map neutron distribution of ⁴⁸Ca

Full ⁴⁸Ca weak charge density

- Would provide text book picture of where neutrons and protons are in a nucleus.
- Learn about shell oscillations of neutrons, saturation density of nuclear matter, neutron skin thickness, surface thickness of the neutrons...
- We expect central baryon density in ²⁰⁸Pb to be approximately constant but we only know what the proton density is.
- Compare to new microscopic calculations of the neutron density in ⁴⁸Ca based on chiral effective field theory two and three nucleon interactions.

C. Horowitz

Summary: Neutron distributions

- Crucial calibration on nuclear structure models
- "Super PREX" (also ⁴⁸Ca, ¹²⁸Sn? ~1000 hr each)
- Optimize program of neutron distribution measurements (this is sometime MESA cannot do)

Precision Measurements To Date

Atomic Parity Violation

future measurements and theory challenging

Neutrino Deep Inelastic Scattering

future measurements and theory challenging

PV Møller Scattering

- E158 at SLAC (total uncertainty 17 ppb)
 - statistics limited, theory robust

Technology developed to improve uncertainty by factor ~ 25

Precision Measurements To Date

Atomic Parity Violation

future measurements and theory challenging

Neutrino Deep Inelastic Scattering

future measurements and theory challenging

PV Møller Scattering

- E158 at SLAC (total uncertainty 17 ppb)
 - statistics limited, theory robust

Technology developed to improve uncertainty by factor ~ 25

Precision Measurements To Date

Atomic Parity Violation

future measurements and theory challenging

Neutrino Deep Inelastic Scattering

- future measurements and theory challenging
- **PV Møller Scattering**
 - E158 at SLAC (total uncertainty 17 ppb)
 - statistics limited, theory robust

Technology developed to improve uncertainty by factor ~ 25

Recent Progress 6 GeV PVDIS at JLab: first non-zero determination of axial-vector quark couplings **Qweak at JLab: should produce precision** measurement soon

Measurements of $\sin^2\theta_W$

The most precise measurements are from LEP/SLC

Measurements of $\sin^2\theta_W$

The most precise measurements are from LEP/SLC

Flavor Diagonal Contact Interactions Consider $f_1\bar{f}_1 \rightarrow f_2\bar{f}_2$ or $f_1f_2 \rightarrow f_1f_2$ $L_{f_1f_2} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^2} \eta_{ij}\bar{f}_{1i}\gamma_{\mu}f_{1i}\bar{f}_{2j}\gamma^{\mu}f_{2j}$ New heavy physics that does not couple directly to SM gauge bosons

Measurements of $\sin^2\theta_W$

The most precise measurements are from LEP/SLC

Flavor Diagonal Contact Interactions Consider $f_1\bar{f}_1 \rightarrow f_2\bar{f}_2$ or $f_1f_2 \rightarrow f_1f_2$ $L_{f_1f_2} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^2} \eta_{ij}\bar{f}_{1i}\gamma_{\mu}f_{1i}\bar{f}_{2j}\gamma^{\mu}f_{2j}$ New heavy physics that does not couple directly to SM gauge bosons

on resonance: Az is imaginary

$$\begin{vmatrix} \mathbf{A}_{\mathbf{Z}} + \mathbf{A}_{new} \end{vmatrix}^2 \rightarrow \mathbf{A}_{\mathbf{Z}}^2 \left[1 + \left(\frac{\mathbf{A}_{new}}{\mathbf{A}_{\mathbf{Z}}} \right)^2 \right]$$
 no interference!

Unique role for Low Energy Weak Neutral Current Measurements

Measurements of $\sin^2\theta_W$

The most precise measurements are from LEP/SLC

Flavor Diagonal Contact Interactions

Consider $f_1 \bar{f}_1 \rightarrow f_2 \bar{f}_2$ or $f_1 f_2 \rightarrow f_1 f_2$ $L_{f_1 f_2} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^2} \eta_{ij} \bar{f}_{1i} \gamma_\mu f_{1i} \bar{f}_{2j} \gamma^\mu f_{2j}$ $f_1 \rightarrow f_1 f_2 \rightarrow f_1 f_2$ $f_2 \rightarrow f_1 f_2 \rightarrow f_1 f_2$

New heavy physics that does not couple directly to SM gauge bosons on resonance: Az is imaginary

$$\begin{vmatrix} \mathbf{A}_{\mathbf{Z}} + \mathbf{A}_{new} \end{vmatrix}^2 \rightarrow \mathbf{A}_{\mathbf{Z}}^2 \Biggl[1 + \left(\frac{\mathbf{A}_{new}}{\mathbf{A}_{\mathbf{Z}}} \right)^2 \Biggr]$$
 no interference!

New flavor diagonal interactions mediated by a new light boson such as the "dark Z"

 $\mathbf{Q}^2 \ll \mathbf{M}_{\mathbf{Z}}^2$

Krishna S. Kumar

New Physics Complementarity

Krishna S. Kumar

Dark Z and Parity Violation

• Low Q^2 (< $m^2_{Z_d}$) parity violation from $Z - Z_d$ mixing

• Z_d effects can be parameterized by HD, Lee, Marciano, 2012

$$G_F \to \rho_d G_F$$
 and $\sin^2 \theta_W \to \kappa_d \sin^2 \theta_W$

with
$$\rho_d = 1 + \delta^2 \frac{m_{Z_d}^2}{Q^2 + m_{Z_d}^2}$$
 and $\kappa_d = 1 - \varepsilon \frac{m_Z}{m_{Z_d}} \delta \frac{\cos \theta_W}{\sin \theta_W} \frac{m_{Z_d}^2}{Q^2 + m_{Z_d}^2}$

• Leads to variation of $\sin^2 \theta_W$ with Q^2 :

$$\Delta \sin^2 \theta_W(Q^2) = -\varepsilon \delta \frac{m_Z}{m_{Z_d}} \sin \theta_W \cos \theta_W f\left(Q^2/m_{Z_d}^2\right)$$

$$f\left(Q^2/m_{Z_d}^2\right) = 1/(1+Q^2/m_{Z_d}^2)$$

8

H. Davoudiasl

Complementary "dark" U(1) search, not dependent on decay or production modes

light Z_d Q² dependent shift

HD, Lee, Marciano, work in progress

- $\varepsilon\delta' < 0$ range corresponds to 1 σ band for $\sin^2\theta_W$ deviation
- The upper region of the band: tension with constraints
- \bullet Interesting implications for planned experiments at different Q^2
- Near future: Q_{weak} results can shed further light on this scenario

H. Davoudiasl

SOLID with the 12 GeV Upgrade

Requirements

- High Luminosity with E > 10 GeV
- Large scattering angles (for high x & y)
- Better than 1% errors for small bins
- *x-range* 0.25-0.75
- $W^2 > 4 \text{ GeV}^2$
- Q² range a factor of 2 for each x
 - (Except at very high x)
- Moderate running times

Strategy: sub-1% precision over broad kinematic range: sensitive Standard Model test and detailed study of hadronic structure contributions

SOLID with the 12 GeV Upgrade

- High Luminosity with E > 10 GeV
- Large scattering angles (for high x & y)
- Better than 1% errors for small bins
- x-range 0.25-0.75
- $W^2 > 4 \text{ GeV}^2$
- Q² range a factor of 2 for each x
 - (Except at very high x)
- Moderate running times

Strategy: sub-1% precision over broad kinematic range: sensitive Standard Model test and detailed study of hadronic structure contributions

Krishna S. Kumar

M.Pitt

- Central values close
- Differences come from the treatment of the structure functions
- BTW, we combined errors directly, Hall et al. in quadrature. Could repeat:

 $\operatorname{Re} \Box_{\gamma Z}^{V}(E = 1.165 \text{ GeV})$ $(5.6 \pm 0.36) \times 10^{-3} \quad (5.7 \pm 0.52) \times 10^{-3} \quad (5.4 \pm 2.0) \times 10^{-3}$

C. Carlson

Summary

- The world is saved—maybe—regarding the γZ corr. to Q_{Weak} .
- I.e., $\Box_{\gamma Z}^{\vee}$ now calculated.
- About (8.1±1.4)% of Q_W^p at E_{elec}=1.165 GeV.
 Proportional to E_{elec}.
- Not discussed here: □_{γz}^A also now calculated w/o guesswork certain log terms
- About (6.3±0.6%) of Q_W^p at E_{elec} threshold. Small dependence on E_{elec} . Might still like to improve.
- For goal of 1% or better measurement of QWeak (Mesa), energy is about 1/6 of JLab experiment, and corrections and error in □_{γz}^V scale with energy.
- PVDIS can help shrink uncertainty limits.

C. Carlson

Global fit of Q² < 0.63 (GeV/c)² PVES Data

R. Carlini

P2 at Mainz MESA – Proton Weak Charge

$$\vec{e} + p \rightarrow e' + p \quad Q_W^p \equiv -2[2C_{lu} + C_{ld}] = (1 - 4\sin^2\theta_W)$$
$$A \sim \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + Q^4 B(Q^2)\right]$$

Run at low energy; reduce hadronic contributions and gamma-Z box radiative

- E_{beam}= 155 MeV, 25-45°
- $Q^2 = 0.0049 \text{ GeV}^2$
- 60 cm LH₂ target, 150 μA, 10,000 hours
- Total rate ~ 0.5 THz
- A = 28 ppb to 1.5%
- Improve Jlab Qweak's determination of proton weak charge by factor of 2.5
- 0.13% precision on $sin^2\theta_w$

- Collaborators from Germany and US
- Funding approval by DFG
- R&D in progress
- Aim to run from 2017-2020

6/17/2015

M.Pitt

Intense Electron Beams Workshop

See D. Becker talk

24

Raytrace simulations in the magnetic field

Choice of kinematics for the P2 experiment

Facts and Figures

The following results are based on error propagation calculations **including** the results of the Geant4 simulation of the experimental setup:

Beam energy	155 MeV	
Beam current	150 µA	
Polarization	85 %	± 0.425 %
Target	60 cm	liquid hydrogen
Detector acceptance	2π·20°	θ ε [25°, 45°]
Detector rate	0.5 THz	
Measurement time	1e4 h	
<q2></q2>	4.49e-3 GeV ² /c ²	
A ^{exp}	-28.35 ppb	

	Total	Statistics	Polarization	Apparative	Form factors	Re(□ _{yzA})
Δsin²(θ _w)	3.1e-4	2.6e-4	9.7e-5	7.0e-5	1.4e-4	6e-5
	(0.13 %)	(0.11 %)	(0.04 %)	(0.03 %)	(0.04 %)	(0.03 %)
ΔA ^{exp} /ppb	0.44	0.38	0.14	0.10	0.11	0.09
	(1.5 %)	(1.34 %)	(0.49 %)	(0.35 %)	(0.38 %)	(0.32 %)

Achievable precision @ higher energies/beam current

Beam current: Polarization: Target material: Target: Measurement time: Detector acceptance: ΔA^{app} :

Beam energy: 300 MeV Central scattering angle: 19° $A^{PV} = (-30.8 \pm 0.34)$ ppb $<Q^2> = 4.84e-3 \text{ GeV}^2/\text{c}^2$ Rate elastic e-p: 1.8 THz 1 mA
85 % ± 0.425 %
liquid hydrogen
60 cm
10000 h
2π·20°
0.1 ppb

Matches P2, requires 10k hours

Beam energy: 500 MeV Central scattering angle: 14° $A^{PV} = (-24.8 \pm 0.36) \text{ ppb}$ $<Q^2 > = 3.82e-3 \text{ GeV}^2/\text{c}^2$ Rate elastic e-p: 3.6 THz

Qweak Apparatus Reused at Lower Energy

What might be achievable by re-using the Qweak apparatus at lower beam energy for a much lower Q² measurement of the proton's weak charge?

Monte Carlo studies by Juliette Mammei and Kurtis Bartlett (using Qweak apparatus with same relative target/collimators/spectrometer postions, etc.) indicates there is a focus at lower energies (200 MeV to 600 MeV).

R. Carlini

Projections for Using Qweak Apparatus at 600 MeV

Projected rates/asymmetries for standard Qweak apparatus at 600 Mev: Case A: standard 2.5 kW LH₂ target; Case B: 3.8 kW LH₂ target

Parameter	MESA P2 [*]	Q-weak 600, case A	Q-weak 600, case B	
E _{beam}	200 MeV	600 MeV	600 MeV	
Time	10000 hours	10000 hours	10000 hours	
Current	150 μA	200 µA	300 μA	
LH ₂ Target Length	60 cm	35 cm	35 cm	
Polarization	85%	85%	85%	
Central θ	20 [°]	8°	8°	
<q<sup>2 ></q<sup>	.0029 GeV ²	.0065 GeV ²	.0065 GeV ²	
Total rate	440 GHz	30 GHz	44 GHz	
Asym. Width @240 Hz	23 ppm	89 ppm	74 ppm	
A _{phys} (ppb)	-20 ppb	-46 ppb	-46 ppb	
Hadronic "B" term	9%	10%	10%	
ΔA (stat)	0.25 ppb (1.2%)	0.96 ppb (2.1%)	0.79 ppb (1.7%)	
ΔA (syst)	0.19 ppb (0.9%)	0.41 ppb (0.9%)	0.41 ppb (0.9%)	
ΔA (tot)	0.34 ppb (1.7%)	1.20 ppb (2.6%)	1.01 ppb (2.2%)	
ΔQ^{p}_{W}	0.0014 (2.0%)	0.0021(3.0%)	0.0019 (2.6%)	
$\Delta sin^2 \theta_w$	3.6x10 ⁻⁴ (0.15%)	5.4x10 ⁻⁴ (0.23%)	4.7x10 ⁻⁴ (0.20%)	

* MESA P2 parameters come from F. Maas talk at "Dark Forces at Accelerators" Frascati, Oct. 2012

37

R. Carlini

Measurements with other targets at P2

S. Baunack

C12 @ P2 MESA – Weak Charge of the ¹²C Nucleus

S. Baunack

3x better than APV, nearly same coupling combination Moderate runtime

Inelastic Levels: Experiment

Fig. 4. This figure shows the elastic-scattering peak from carbon at an abscissa near 185 MeV, and the melastic scattering peak from the excited states of "C. The peak near 180.7 MeV is associated with the 4.43-MeV level.

Strange Form Factors – Worldwide Program

1992 – 2011: Worldwide program on strange form factors measured with PVES

SAMPLE: Location: MIT-Bates Targets: p,d Kinematics: backward angle, Q² = .038,.10 GeV²

HAPPEx I, II, III:Location: Jefferson Lab Hall ATargets: p, 4 HeKinematics: forward angle, Q² = .10,.48, .62 GeV²6/17/2015

Mainz PV-A4: Location: Mainz MAMI microtron Targets: p,d Kinematics: forward & backward angles $Q^2 = .11, .23, .62 \text{ GeV}^2$

 $\begin{array}{c} \mbox{Location: Jefferson Lab Hall C} \\ \mbox{Targets: p, d} \\ \mbox{GeV}^2 \\ \mbox{Intense Electron Beams Workshop} \end{array} \\ \begin{array}{c} \mbox{Location: Jefferson Lab Hall C} \\ \mbox{Kinematics: forward \& backward angles} \\ \mbox{Q}^2 = .1 - 1 \ \mbox{GeV}^2 \end{array}$

M. Pitt

Strange Form Factors – Measurements at Low Energy?

Are further strange form factor measurements warranted?

State-of-the-art lattice QCD calculations set the scale of what is interesting.

Recent lattice predictions for the strange magnetic moment:

 $G_M^s (Q^2 = 0) \equiv \mu_s = -0.07 \pm 0.03 \ \mu_N$ Green, *et al.*, arXiv:1505.01803

 $G_M^s (Q^2 = 0) = \mu_s = -0.022 \pm 0.004 \pm 0.004 \pm 0.006 \ \mu_N$ Shanahan, et al., PRL **114**, 091802 (2015)

Possible backangle measurements at low energies?

M. Pitt

- "A4 style" fast calorimeter during P2, $\theta \sim 140 150^{\circ}$, 150 MeV, 150 μ A, 60 cm LH/D₂ targets, 1000 hours each $\rightarrow \delta G^{s}_{M} \sim \pm 0.05 \mu_{N}$ (Baunack, PEB2013)
- "SAMPLE" style air Cerenkov, $\theta \sim 130 170^{\circ}$, not yet estimated

See K. Kumar talk for possibilities for strange radius at low energies 6/17/2015 Intense Electron Beams Workshop

P2 back angle measurement!

Back angle measurements: Determination of G_M^s and G_A

S. Baunack

Possible uncertainties of G_A and G_M^s with P2 back angle measurement

- Q²=0.06 GeV²
- Numerical determination of precision
- Choose randomly EM form factors and asymmetries according to their uncertainties and calculate G_A and G_M^s
- Correlation of electromagnetic form factors input taken into account

S. Baunack

Strangeness using isoscaler nucleus:12C

Measurement of ¹²C at higher q pins strangeness radius (G_E^s), calibrates low-q Standard Model study

Moderate running time, needs 300 MeV or more

O. Moreno

Summary: Weak Charge

- Proton weak charge hard to beat P2
- ¹²C can provide powerful SM test (2500 hrs)
- ¹²C requires additional precision on GEs.
 - Hard to do at MESA, needs 300 MeV

Vector Analyzing Power

$$A_T \equiv \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \vec{S}_e \bullet (\vec{k}_e \times \vec{k'}_e)$$

We measured this, in part, because it is a possible systematic error for the PV measurements.

- What does the Pb-208 AT result imply?
- dispersion corrections on top of Coulomb distortions?
- What if it is a very sensitive cancellation?
 - What happens when we run again at slightly different kinematics?
 - What if Ca-48 doesn't have this accidental cancellation?
- should other electroweak corrections be revisited?
- Motivates more A_T measurements at different energies

Experimental Requirements $\mathcal{L} \sim 10^{39} / (s-cm^2)$

Linear integration over helicity "window"

RF beam monitors - well known technology, but linear integration requirement is sometimes different

modest resolution ~ 1 micron over 1 ms

Polarimetry

Electron

Scattered

Electrons

Backscattered Photons

Compton

Dipole

532 nm laser, 300 MeV: Compton edge ~3 MeV

Fabry-Perot

Optical Cavity

Laser Table

Require 2+ meter dispersion for electron measurement

Possible for 0.5% or better... but very hard

Atomic hydrogen Moller

Dipole

from E. Chudakov

Storage Cell

Detecto

First: 1980 (I.Silvera,J.Walraven) \vec{p} jet (Michigan) Never put in high power beam

- $-\vec{\nabla}(\vec{\mu_HB})$ force in the field gradient
 - pulls $|a\rangle$, $|b\rangle$ into the strong field
 - repels $|c\rangle$, $|d\rangle$ out of the field
- H+H→H₂ recombination (+4.5 eV) high rate at low T
 - parallel electron spins: suppressed
 - gas: 2-body kinematic suppression
 - gas: 3-body density suppression

20/35

- surface: strong unless coated ~50 nm of superfluid ⁴He
- Density $3 \cdot 10^{15} 3 \cdot 10^{17} \text{ cm}^{-3}$.
- Gas lifetime > 1 h.

Generation of Helicity-Correlated differences in the source

Mechanical PC steering

Polarization effects:

PC birefringence gradients coupled with cathode analyzing power

Optimization strategies:

- Careful alignment on laser table
- Balance residual linear polarization from PC with vacuum window birefringence and cathode analyzing power

Jun 17, 2015

Intense Electron Beams Workshop, Cornell University

M. Kargiantoulakis

Apparatus

- Assumption: 100 microAmp at 300 MeV
- Solenoid, not toroid (resolution to isolate elastic signal)
- Extracted beamline
 - Space for apparatus, diagnostic beamline, fast raster
 - beam height ~ 3m
 - Space for polarimeters atomic hydroMoller
 - Beam dump (with acceptance for disrupted beam)
- High dispersion point (few meters?) for E measurement
 - (and another?) for Compton Polarimetry (2+ meters)
- Linear integrating beam monitors, spanning phase space
- Special considerations in polarized source

Potential of New Machine

• Program with 300 MeV, 100 microamps

• Higher current, higher E would help

New measurements on Carbon-12

- A Standard Model test extremely interesting if 0.3% can be reached
- Must be coupled with higher Q² measurements to constrain strange quark radius (strange quark contribution to charge radius)

New measurements on neutron-rich nuclei

- "Super" PREX/ CREX / Sn-REX
- Higher Q² measurements will provide a complete and modelindependent distribution of neutrons in the ground state