Internal Targets at the Intensity Frontier

Ross Corliss, MIT

DarkLight Disclaimer

- This talk is from the perspective of someone who works on the DarkLight experiment (J. Balewski,Thursday)
- Hunt for dark photon (X) underneath large, irreducible SM background

- 100 MeV e- beam to stay under pion threshold.
- To do it fast, need high luminosity: dense target, intense beam.

Quick-Sell For Energy Recovery Linacs

- External target low current, no emittance limit
- Storage ring higher current, low emittance limit
- ERL higher current, higher emittance allowed

Outline

- Motivation for High Luminosity
- Standard Model Rates
- Detector Concerns
- Beam Concerns
- Possible Targets

Standard Model Environment

- Luminosity= 2x10³⁶ cm⁻²s⁻¹ (beam intensity=6x10¹⁶ e- s⁻¹ target thickness=3x10¹⁹cm⁻²)
- Total Møller rate 2-5°
 ~ 30 GHz (E<100 MeV)
- Total Elastic rate 2-5°
 ~ 30 GHz (E~100 MeV)

Møller Envelope

• In DarkLight, solenoid contains Møllers in small radius

June 17, 2015

Ross Corliss

Intense Electron Beams Workshop, Cornell

Material Downstream

- "You can't collimate electrons, you can only make them angry" - Alvin Tollestrup?
- No material inside Møller envelope.

• Graded Møller dump: C, then Fe after to absorb.

June 17, 2015

Detector's Perspective

- Must handle very high, forward-peaking rate
- Multiple scattering complicates tracking and design
- Moller dump unevenly heated.

Some Rate-Tolerant Detectors

• GEMs (COMPASS)

• HV-MAPS (Mu3e)

• Micromegas (CLAS12)

• Scintillating Fibers (Mu3e)

Beam's Perspective

- Only areal density matters
- Energy loss in target doesn't affect phase at RF
- Beamline must remain low pressure
- Max. acceptable emittance unclear (DL beam tests, 2016)

Possible Targets

- Gas cell -- distributed target
- Gas jet -- pointlike
- Thin foil -- pointlike

Gas Cell Concept

- Flow gas into windowless cell
- Contain with narrow flow limiters (tube or baffle)
- Pump aggressively to maintain vacuum

Flow Limiter Study

Beam steered through test block at JLab's LERF in 2012
Full gas cell test planned for 2016

June 17, 2015

Measuring Beam Losses

Baffle Prototype

• Flow model more complex, but simpler support

June 17, 2015

Gas Cell Pumping Scheme

• Many tunable parameters

June 17, 2015

Gas Cell

- Engineering:
 - Little solid-angle obstruction
 - Difficult gas flow regime to model
 - Conductance limiters in Møller envelope
- Physics:
 - Distributed primary vertices
 - Acceptance uneven

Gas Jet Concept

- Supersonic gas jet crosses beam path
- Majority of the jet is captured in receiver
- Very little gas leaks into beamline

Gas Jet Concept

- Laval nozzle produces supersonic flow.
- Nozzle profile can be tuned for turbulence-free flow

Gas Jet Status

- Many 10¹⁹ gas jets have been demonstrated
- MAGIX (Mainz)
 - Laser sintered nozzles aiming for 10¹⁹
 - Sees first jet!
- JENSA (ORNL/MSU)
 - Sees 10¹⁸-10¹⁹ in He and others

JENSA Pumping Scheme

June 17, 2015

Ross Corliss

Gas Jet

- Engineering:
 - Some solid-angle obstruction
 - must pump on receiver
 - beamline pumping reduced
 - Many operating parameters to optimize
- Physics:
 - Single primary vertex

Thin Foil Concept

- Self-supporting,
 ≥0.5um foil of carbon nanoparticles.
- Used as stripper foils in accelerator settings

http://www.micromatter.com/dlc.php

Thin Foil

- Engineering
 - No pumping required
 - Thermal properties sufficient
 - Requires much lower beam intensity
- Physics
 - Very precise primary vertex
 - Limited choice of target species

Outlook

- Standard model effects dominate design
- Several detector technologies (Micromegas, GEMs, HVMAPS, scintillating fibers, and more).
- Several options for targets (Gas Cell, Gas Jet, Thin Film).
- Planned beam test (2016) will explore many of these options in real conditions.

June 17, 2015

Gas Electron Multiplier

- Three stages of gas
 amplification
- Simple lithography
- Complex assembly

Micro-Mesh Gaseous Structure

- Single-stage
- Complex lithography
- Curved detectors possible

HV-MAPS High Voltage - Monolithic Active Pixel Sensors

- Digital and analog components integrated into Si pixel material
- Thin
- Zero-suppression built in

Scintillating Fibers

- Fast signal propagation
- Mass comparable to GEM stack
- Vacuum-compatible
- Mate to multi-anode PMTs or SiPMs

Scintillating Fibers

Specific Properties of Standard Formulations						
Fiber	Emission	Emission	Decay	1/e	# of Photons	Characteristics / Applications
	Color	Peak, nm	Time, ns	Length m*	per MeV**	
BCF-10	blue	432	2.7	2.2	~8000	General purpose; optimized for diameters >250 μ m
BCF-12	blue	435	3.2	2.7	~8000	Improved transmission for use in long lengths
BCF-20	green	492	2.7	>3.5	~8000	Fast green scintillator
BCF-60	green	530	7	3.5	~7100	3HF formulation for increased hardness
BCF-91A	green	494	12	>3.5	n/a	Shifts blue to green
BCF-92	green	492	2.7	>3.5	n/a	Fast blue to green shifter
BCF-98	n/a	n/a	n/a	n/a	n/a	Clear waveguide

* For 1mm diameter fiber; measured with a bialkali cathode PMT

** For Minimum Ionizing Particle (MIP), corrected for PMT sensitivity