(light) Dark Matter Overview

Gordan Krnjaic

Intense Electron Beam Workshop Cornell University, June 18, 2015

Impressive Indirect Evidence for DM

Gravitational lensing

CMB

Cluster collisions

but no direct observation (yet)!

Discovery challenge: no clear scale

DM viable over enormous mass range

$$10^{-33} \text{ eV} \longleftarrow m_{\text{DM}} \longrightarrow 10^{19} \text{ GeV} +$$

Hubble sized axion-like particle Black hole/MACHO

Many scenarios are undiscoverable

Fortunately, "thermal" history narrows scope

Applies to most* interesting / discoverable models & lots of room for progress

Thermal Origin is Predictive Feature # 1: huge early universe density!

$$n_{\rm DM}(T) = \int \frac{d^3 p}{(2\pi)^3} \frac{g_i}{e^{E/T} \pm 1} \sim T^3$$

Requires minimum annihilation rate

$$\sigma v \ge \sigma v_{\text{relic}} \sim 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$$

= symmetric DM

> asymmetric or subdominant DM

Important target for discovery or falsifiability

Thermal Origin is Predictive

Feature # 2: most masses can't be thermal

Equilibrium reduces viable mass & coupling range

Annihilation "mediators"

> GeV DM : Mediator can carry SM charge

< GeV DM : W/Z/H too heavy!

"wimpless miracle"

new

$$\sigma v \propto \frac{m_{\chi}^2}{m_{\rm new}^4} \implies \Omega_{\chi} \sim \Omega_{DM}$$

 \implies Need light new mediator

Direct annihilation = invisibly decaying mediator

$m_{\rm MED} > 2m_{\rm DM}$

offers clear & testable target

Visible mediator decay t-channel DM annihilation

Invisible mediator decay s-channel DM annihilation

insensitive to SM coupling

sensitive to DM x SM coupling

Direct annihilation = invisibly decaying mediator

$m_{\rm MED} > 2m_{\rm DM}$

offers clear & testable target

Visible mediator decay t-channel DM annihilation

Jie mediator decay Jannel DM

 $\bar{\chi}$ — MED

MED

insensitive to Supling

positive to DM x SM c

 χ

Light mediator must be SM neutral

Higgs Portal $(H^{\dagger}H)|\phi^{\dagger}\phi| \leq$

couplings scale with mass

"Axion" Portal $\frac{m_f}{f_a} a \bar{f} \gamma^5 f$

Vector Portal

A' mediator

Invisibly decaying

 $\epsilon F_{\mu\nu}F'_{\mu\nu} \iff$

couplings scale with charge

A' to SM: ϵe A' to DM: g_D

Some caveats (see Natalia Toro's talk)

"Axion" Portal

Vector Portal

 (H^{\dagger}) M f 5aj

Thermal Ruled out by rare meson decays

> [Izaguirre, GK, Schuster, Toro] (to appear)

 $\epsilon F_{\mu\nu}F'_{\mu\nu}$

Many viable sub-GeV scenarios

What kind of DMP Classify by Coupling/Spin/Abundance

Elastic (no mass splitting) Constrained by CMB & Direct Detection

Inelastic (mass splitting)

Easily evades CMB & Direct Detection constraints

 $\Delta \equiv m_{\psi} - m_{\chi}$

Either can be (fermion/scalar) x (symmetric/asymmetric) How constrained are these?

 χ

 γ

Traditional Search Program

Insensitive to sub-GeV thermal DM

Existing Coverage*

* = elastic & symmetric

Thermal Target

Bounds: Electron Direct Detection

Xenon10 electron scattering constrains

 $\sigma_{\chi e} \propto \epsilon^2 \alpha \alpha_D \frac{\mu_{\chi e}^2}{m_{A'}^4}$

 $y \equiv \epsilon^2 \alpha_D \left(\frac{m_{\chi}}{m_{A'}}\right)^4$ vs. m_{χ}

14

Theorist reinterpretation

Essig Mardon, Papucci, Volansky, Zhong

1206.2644

Bounds: Colliders/B-Factories

BaBar Production:

$$\sigma \sim \frac{\epsilon^2 \alpha}{E_{CM}^2}$$

$$\sim y \times \frac{1}{g_D^2} \left(\frac{m_{A'}}{m_{\chi}}\right)^4$$

Theorist reinterpretation Essig, Mardon, Volansky 1309.5084 Izaguirre, GK, Schuster, Toro 1307.6554

Not intuitive: must assume some dark coupling (and mass ratio) to compare with thermal target

Conservative to choose <u>large</u> DM coupling (order-one mass ratio) demands tiny visible coupling for fixed annihilation rate

Bounds: CMB

If* DM can annihilate during CMB epoch, it can reionize Hydrogen

$$\sigma v \propto \epsilon^2 \alpha \alpha_D \left(\frac{m_{\chi}}{m_{A'}}\right)^4 \frac{1}{m_{\chi}^2}$$

Slatyer et. al. 1206.2644 Theorist reinterpretation

Same scaling as thermal relic target, compare by plotting:

$$y \equiv \epsilon^2 \alpha_D \left(\frac{m_{\chi}}{m_{A'}}\right)^4$$
 vs. m_{χ}

Model Dependent!

Weaker [absent] for p-wave [inelastic] coupling!

Bounds: Beam Dumps

Rate $\propto \epsilon^4 \alpha_D / m_{A'}^2$

Conservative Comparison

 $\alpha_D, (m_{A'}/m_{\chi}) \sim \mathcal{O}(1)$

Status: Fermion Symmetric Elastic

BaBar, LSND, LHC:
$$\alpha_D \times \left(\frac{m_{\chi}}{m_{A'}}\right)^4 = \frac{1}{81}$$

Izaguirre, GK, Schuster, Toro 1504.00011

Status: Scalar Symmetric Elastic

 χ

Status: Fermion Asymmetric Elastic $_{\chi}$

Status: Fermion Symmetric Inelastic

 χ

 ψ

Thursday, June 18, 15

DarkLight @ Cornell linac?

Reconstruct e & p kinematics, look for resonance

Agnostic: production/detection insensitive to α_D

Good photon rejection required

Relevant e-linac features comparable to JLab effort

Invisible decay projection (@ JLab) Kahn, Thaler 1209.0777 Balewski, Fisher et. al. (DarkLight Collaboration) http://dmtpc.mit.edu/DarkLight/

Thursday, June 18, 15

DarkLight @ Cornell linac?

 χ

 $\overline{\chi}$

 e^{-}

Izaguirre, GK, Schuster, Toro 1307.6554 & 1403.6836

Battaglieri et. al. (BDX collaboration) 1406.3028

BDX @ Cornell linac?

E(beam)= 400 MeV, 10^{22} **EOT, E(recoil) > 50 MeV** BaBar, LSND, LHC, BDX: $\alpha_D \times \left(\frac{m_{\chi}}{m_{A'}}\right)^4 = \frac{1}{81}$

BDX @ Cornell linac?

E(beam) = 400 MeV, 10^{22} **EOT, E(recoil) > 50 MeV** BaBar, LSND, LHC, BDX: $\alpha_D \times \left(\frac{m_{\chi}}{m_{A'}}\right)^4 = \frac{1}{81}$

Status: Thermal Light DM Interesting Times Ahead

* = elastic & symmetric

Status: Thermal Light DM

Best limits from nontraditional searches Fixed targets & B-factories especially powerful Best hope for probing harder scenarios

Most from theorists reinterpreting old experiments There are no dedicated efforts (yet!) contrast w/ billion \$ heavy DM program

Lots of viable param-space left for < GeV DM Lots of room for improvement

New way forward @ Cornell?

Thank You