

dark sector searches using photons and Higgs bosons

O. K. Baker Yale University

> IEB workshop June 18, 2015

the standard model . . .

- 36 quarks (6 flavor x 3 color x 2 charges)
 - gluons

3

58

- charged leptons (μ^+ , μ^- , e^+ , e^- , τ^+ , τ^-)
 - neutral leptons (v_e, v_μ, v_τ)
 - gauge bosons (Z^0 , W^+ , W^- , γ)
 - SM-like Higgs boson (H⁰)

known elementary particles in SM

beyond the standard model . . .

≻what is dark matter?

>what is dark energy?

>what happened to the antimatter?

 \succ what about θ term in QCD lagrangian?

>are there dark force mediators?

. . .

'dark sector' particle properties

non-luminous

- Feeble interaction with SM particles and fields
- > may be more than one component
- > dominates matter budget of the universe

dark sector searches using SM particles and fields?

light shining through a wall can suppress background by over 20 orders of magnitude !!! kW lasers, cavities, ultra low noise detectors, ...

light with magnetic field

Sikivie (1983); Ansel'm (1985); Van Bibber et al (1987)

- kinetic mixing
- no magnetic field required
- Afanasev et al (2009)

LIPSS at JLab collaboration

A. Afanasev, R. Ramdon Hampton University G. Biallas, J. Boyce, M. Shinn **Jefferson Lab** K. Beard Muons, Inc M. Minarni **Universitas Riau** O.K. Baker, P. Slocum **Yale University**

13

dark sector searches using microwave photons

lsw resonant cavity searches

- Idea: exploit microwave cavities instead of optical resonators [Hoogeveen '92; Jaeckel,Ringwald'07; Caspers,Jaeckel,Ringwald '09]
- With current technology, expect increased sensitivity in certain mass range
- First test experiments have already been done (Livermore; Perth), or are setup (Daresbury; Yale)

DESY November 2, 2010

Yale microwave cavity experiment collaboration

J. Hirshfield, M. LaPointe, G. Kazakevitch, S. Kazakov, S. Shchelkunov, Y. Jiang Omega-P and Yale University O.K. Baker, A. Malagon*, A. Martin, P. Slocum, A. Szymkowiak Yale University

* now at the University of Washington/ADMX

dark sector searches using the Higgs boson

https://espace.cern.ch/atlas-phys-higgs-htogamgam/Lists/ Hgg Moriond 2013/Attachments/46/mass_animation_ZZ4L.gif - mass-animation

٠

•

analysis strategy

- 1. use Higgs decays: H → ZZ* →4l events from HSG2 cut-based 'Moriond' analysis (Phys. Lett. B 726 (2013) 88)
 - Higgs decays to 4e, 4μ , 2μ 2e, and $2e2\mu$
 - \circ 115 GeV < M_{4l} < 130 GeV

2. use Z⁰ (Z1) and Z* (Z2) mass distributions
o leading dileptons: invariant mass (m₁₂) closest to Z⁰ PDG value
o subleading dileptons: highest invariant mass (m₃₄)

- 3. search for narrow peak or excess above background in m_{34} mass distribution; signals V_D
 - ZZ*,ttbar, Z+jets, H \rightarrow ZZ* \rightarrow 4l are backgrounds
 - o use Roostats and BumpHunter statistical tools

4. in the absence of a signal, set upper limits on the relative branching ratio $\frac{bf(H \rightarrow 2Z_d \rightarrow 4l)}{bf(H \rightarrow 4l)}$

m₄₁ spectrum

m34 [GeV]

m₃₄ spectrum

summary

- dark sector physics important part of BSM searches
 - 🧇 dark sector particles, dark forces, ...
- many different probes (two presented today)
 - optical and x-ray photons
 - microwave photons
 - 🦇 beam dumps
 - particle decays
 - medium energy searches
 - energy frontier search using Higgs boson
- opportunities for new ideas/strategies
 - great for students interested in this physics