Precision Møller Scattering at Low Energies

Charles Epstein

Intense Electron Beams Workshop, Cornell University

June 18, 2015

Outline

- Applications at Low Energies
 Radiative Corrections at Low Energy
- **3** Upcoming Measurements

Outline

Applications at Low Energies
 Radiative Corrections at Low Energy

Opcoming Measurements

This talk will cover the process

$$e^- + e^-
ightarrow e^- + e^- + (\gamma)$$

- Precision calculations including radiative corrections
 - Unpolarized, QED only
- Relevance to future experiments
- Upcoming new measurements

- Baseline process for nuclear physics experiments, e.g.:
 - **OLYMPUS**¹: measure two-photon exchange in lepton-proton scattering via e^+p/e^-p cross-section ratio @ 2 GeV
 - Separate e^+/e^- beams: normalize to Møller/Bhabha

¹R. Milner, D. K. Hasell, et al., Nucl. Instrum. Methods Phys. Res. A 741, 1 (2014).
 ²M. Meziane and P. Collaboration, AIP Conference Pro- ceedings 1563, 183 (2013).

Charles Epstein (MIT)

Low-Energy Møller Scattering

- Baseline process for nuclear physics experiments, e.g.:
 - **OLYMPUS**¹: measure two-photon exchange in lepton-proton scattering via e^+p/e^-p cross-section ratio @ 2 GeV
 - Separate e^+/e^- beams: normalize to Møller/Bhabha
 - PRad²: measure proton form factor at low Q^2 : charge radius
 - Normalize ep to Møller at forward angles

¹R. Milner, D. K. Hasell, et al., Nucl. Instrum. Methods Phys. Res. A 741, 1 (2014).
 ²M. Meziane and P. Collaboration, AIP Conference Pro- ceedings 1563, 183 (2013).

Charles Epstein (MIT)

Low-Energy Møller Scattering

- Baseline process for nuclear physics experiments, e.g.:
 - **OLYMPUS**¹: measure two-photon exchange in lepton-proton scattering via e^+p/e^-p cross-section ratio @ 2 GeV
 - Separate e^+/e^- beams: normalize to Møller/Bhabha
 - PRad²: measure proton form factor at low Q^2 : charge radius
 - Normalize ep to Møller at forward angles
- High-rate noise background: e.g. DarkLight @ 100 MeV

¹R. Milner, D. K. Hasell, et al., Nucl. Instrum. Methods Phys. Res. A 741, 1 (2014).
 ²M. Meziane and P. Collaboration, AIP Conference Pro- ceedings 1563, 183 (2013).

Charles Epstein (MIT)

Low-Energy Møller Scattering

- Baseline process for nuclear physics experiments, e.g.:
 - **OLYMPUS**¹: measure two-photon exchange in lepton-proton scattering via e^+p/e^-p cross-section ratio @ 2 GeV
 - Separate e^+/e^- beams: normalize to Møller/Bhabha
 - PRad²: measure proton form factor at low Q^2 : charge radius
 - Normalize ep to Møller at forward angles
- High-rate noise background: e.g. DarkLight @ 100 MeV
- Potential searches for new physics via vacuum polarization diagrams

¹R. Milner, D. K. Hasell, et al., Nucl. Instrum. Methods Phys. Res. A 741, 1 (2014).
 ²M. Meziane and P. Collaboration, AIP Conference Pro- ceedings 1563, 183 (2013).

Charles Epstein (MIT)

Low-Energy Møller Scattering

DarkLight

Measure $e^-p ightarrow e^-p e^+e^-$ at 100 MeV, $\mathcal{L}=6 imes 10^{35}~{ m cm}^{-2}{ m s}^{-1}$

- Sweep Møller e^- with solenoid: still significant backscattering
- Møller photons produce high rate of secondaries

Charles Epstein (MIT)

Low-Energy Møller Scattering

Outline

Applications at Low Energies
 Radiative Corrections at Low Energy
 Upcoming Measurements

Theoretical Goals

- Unpolarized Møller (and Bhabha) scattering
- Full calculation including NLO radiative corrections (QED only)
 - No peaking, ultra-relativistic (etc) approximations
- Full treatment of bremsstrahlung
- C++ event generator \rightarrow drive simulations

Desired and Produced:

Separate "elastic" from radiative events by an E_{γ} cutoff: ΔE

Treat types of events separately

- $E_{\gamma} > \Delta E$: Hard-photon bremsstrahlung
 - Exact $e \ e \rightarrow e \ e \ \gamma$ cross-section
- $E_{\gamma} < \Delta E$: "Close enough" to elastic kinematics
 - Apply soft-photon radiative corrections

Soft Radiative Corrections: $E_{\gamma} < \Delta E$

- Integrate soft photon over all Ω and up to $E_{\gamma} = \Delta E$
- Soft-photon + loop-level IR divergences cancel

³I. Akishevich, H. Gao, A. Ilyichev, and M. Meziane, Euro Phys Journal A 51 (2015).
 ⁴N. Kaiser, J. Phys. G: Nucl. Part. Phys. 37 (2010).

Charles Epstein (MIT)

Low-Energy Møller Scattering

Soft Radiative Corrections: $E_{\gamma} < \Delta E$

- Integrate soft photon over all Ω and up to $E_\gamma = \Delta E$
- Soft-photon + loop-level IR divergences cancel

$$egin{aligned} rac{d\sigma}{d\Omega} &= (1+\delta) rac{d\sigma}{d\Omega} igg|_{\mathsf{Born}} \ \delta &= \delta(\mathbf{\Delta}\mathsf{E},\mathsf{s},\mathsf{t},\mathsf{u}) \end{aligned}$$

Expect that as ΔE gets smaller, δ gets smaller

- Many formulations use ultra-relativistic approximations: $m_e
 ightarrow 0$
- Recently worked out beyond URA for Møller³, Møller/Bhabha⁴

³I. Akishevich, H. Gao, A. Ilyichev, and M. Meziane, Euro Phys Journal A 51 (2015).
 ⁴N. Kaiser, J. Phys. G: Nucl. Part. Phys. 37 (2010).

Charles Epstein (MIT)

Low-Energy Møller Scattering

Ultra-relativistic Approximations

- Higher-order m_e terms often neglected
 - For high beam energies, typically a good approximation
- Effects visible at low energy: at angles where m_e^2/t or m_e^2/u no longer $\ll 1$

 $\delta \text{ grows}$ as ΔE gets smaller

• **Unphysical** \rightarrow implies higher rate at smaller energy windows

Lab-frame angles at which $m_e^2/t = 0.1$

Improper behavior of δ : $\sqrt{s} = 10.16$ MeV (DL)

(Tsai, 1960)

Charles Epstein (MIT)

What δ should look like

(Kaiser, 2010)

Charles Epstein (MIT)

Hard-photon Bremsstrahlung: $E_{\gamma} > \Delta E$

Calculated exactly using FeynArts/FormCalc

Bremsstrahlung Cross-Section (CM System)

$\frac{d^5\sigma}{\mathsf{dE}_{\gamma}\ d\Omega_{\gamma}\ d\Omega_{3}} = \frac{1}{32m_e^3(2\pi)^5} \frac{E_{\gamma}}{2EpR_c} \sum_{\nu} p_{3\nu}^2 \langle |M|^2 \rangle \ \ [^5]$

⁵Haug & Nakel, 2004

Charles Epstein (MIT)

Low-Energy Møller Scattering

Bremsstrahlung Cross-Section (CM System)

$\frac{d^5\sigma}{\mathsf{dE}_{\gamma}\ d\Omega_{\gamma}\ d\Omega_{3}} = \frac{1}{32m_e^3(2\pi)^5} \frac{E_{\gamma}}{2EpR_c} \sum_{\nu} p_{3\nu}^2 \langle |M|^2 \rangle \ \ [^5]$

$$\mathbf{E_3} = \frac{2E(E - E_{\gamma})(2E - E_{\gamma}) \mp E_{\gamma}m_e^2 \cos \alpha R_c}{(2E - E_{\gamma})^2 - E_{\gamma}^2 \cos^2 \alpha}$$

Typically only upper sign is permitted. Above a photon energy E_{γ_0} , both become allowed

⁵Haug & Nakel, 2004

Charles Epstein (MIT)

Lepton Constraints

Two values allowed for:

$$E_{\gamma_0}>2E(E-m_e)/(2E-m_e)$$

Additional constraint:

Cross-section:

$$rac{d\sigma}{d\Omega_3} = \left(rac{1}{2}
ight)_{ ext{Symmetry}} imes \langle |M|^2
angle imes [ext{Phase Space}]$$

- Must integrate over "interest" and "recoil" regions
- Easy with elastic kinematics
- Radiative: "recoil" region isn't simple

(CM system)

Cross-section: $\frac{d\sigma}{d\Omega_3} = \left(\frac{1}{2}\right)_{\text{Symmetry}} \times \langle |M|^2 \rangle \times [\text{Phase Space}] \xrightarrow{\text{"Recoil Provides P$

- Must integrate over "interest" and "recoil" regions
- Easy with elastic kinematics
- Radiative: "recoil" region isn't simple

(CM system)

- Must integrate over "interest" and "recoil" regions
- Easy with elastic kinematics
- Radiative: "recoil" region isn't simple

(CM system)

Generator: check each event for double-counting

Charles Epstein (MIT)

Low-Energy Møller Scattering

Soft-photon corrections and bremsstrahlung should agree near $E_\gamma \sim \Delta E$

Rearrange:

Soft-Photon

Bremsstrahlung

 $\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\Omega_{3} \mathrm{d}E_{\gamma}} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{3}} \bigg|_{\mathsf{Born}} \times \frac{\mathrm{d}}{\mathrm{d}\Delta E} \big\{ \delta(\Omega_{3}, \Delta E) \big\}$ $\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\Omega_{3} \mathrm{d}E_{\gamma}} = \int_{4\pi} \frac{\mathrm{d}^{5}\sigma}{\mathrm{d}\Omega_{3} \mathrm{d}E_{\gamma} \mathrm{d}\Omega_{\gamma}} \mathrm{d}\Omega_{\gamma}$

Electron Cross-Section at fixed angles (2 GeV)

Ratio of hard/soft cross-sections

Electron Cross-Section at high photon energies

Outline

- Applications at Low Energies
 Radiative Corrections at Low Energy
- **3** Upcoming Measurements

Møller Scattering at 100 MeV

Why measure unpolarized low-energy Møller scattering?

Quantities with	
few precision	
data	

- Distribution of E at fixed θ : radiative tail
 - Verify bremsstrahlung calculation

Møller Scattering at 100 MeV

Why measure unpolarized low-energy Møller scattering?

Quantities with few precision data

- Distribution of *E* at fixed θ : radiative tail
 - Verify bremsstrahlung calculation
- Precise electron-electron cross-section vs $\boldsymbol{\theta}$
 - Verify soft-photon radiative corrections \rightarrow beyond URA

Møller Scattering at 100 MeV

Why measure unpolarized low-energy Møller scattering?

Quan	tities	with
few	precis	sion
	data	

- Distribution of E at fixed θ : radiative tail
 - Verify bremsstrahlung calculation
- Precise electron-electron cross-section vs $\boldsymbol{\theta}$
 - Verify soft-photon radiative corrections \rightarrow beyond URA

Requirements

- Measure electrons with energy 1-5 MeV/c
- Momentum resolution $\delta p/p \sim 1\%$
- Scattering angles 25°-45°

The radiative Møller process will be measured in tandem with the DarkLight experiment

- Jefferson Lab LERF/ERL: 100 MeV electrons
- Energy measurement with magnetic spectrometers
- Map out electron energy spectrum at various heta
- ${\sim}100$ settings

Møller Measurement Layout

Two-Spectrometer Layout

- Pointlike target: 5µm MicroMatter diamond-like carbon foil
- Measure electron p and θ ; normalize to e-C scattering

Møller Measurement Layout

- 25° to 45° every 5°
- Entirely vacuum until detector: eliminate multiple scattering

Charles Epstein (MIT)

Cross-Sections: Inelastic

Cross-Sections: Inelastic

2D array of crossed scintillating fibers

- Two 2-layer arrays at 90°
- Detector Size: 15cm \times 5cm
- Light collection: SiPM array or multianode PMT

arXiv:1011.0226, https://userweb.jlab.org/~yez/Work/SFT/SFT_Status.pdf

Charles Epstein (MIT)

Low-Energy Møller Scattering

Summary

Calculated

- Single-photon bremsstrahlung to extend Møller/Bhabha soft-photon corrections
- Beyond URA \rightarrow optimal for low beam energies
- Incorporated into a new Monte Carlo event generator

Plan to Measure

- Møller electrons: 25°-45°
 - Map out energy distribution every 5°
- Magnetic spectrometers: 30cm, 90° dipole
 - Potential: 2D scintillating fiber detector

Backup

Luminosity	$\sim 2 imes 10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Target	5 μm diamond-like carbon
Target e^- thickness	$\sim 3 imes 10^{20}$ cm $^{-2}$ @ 5 μ m
Beam	100 MeV, 0.01 mA
Beam power deposition	0.027 Watts / 0.01 mA

Spectrometer Parameters

Detectors	Two dipole spectrometers	
Detectors	+ readout planes	
Dipole radius	30 cm	
Dipole angle	90°	
Momentum acceptance	$\Delta ho / ho \sim 10\%$	
Momentum resolution	$\delta ho / ho \sim 10^{-3}$ - 10^{-2}	
heta acceptance	$\pm 0.5^{\circ}$	
ϕ acceptance	1°	
heta pos. resolution	$ < 0.1^{\circ}$	
Luminosity Angle	$\sim 25^{\circ}$	
Signal Angles	25° to 45° (in 5° steps)	
Luminosity electron momentum	\sim 100 MeV/c	
Luminosity detector field	${\sim}1.2$ T: existing magnet	
Signal electron momentum	1-5 MeV/c	
Signal detector field	120 — 600 Gauss	

- ERL transverse emittance \sim 10 mm-mrad (normalized)
 - Multiple scattering ${\sim}1$ mrad
 - Beam spot ${\sim}0.1~\text{mm} \rightarrow {\sim}0.5$ mrad angular spread
 - MS increases emittance $\sim 2 \times$ (OK)
- Power deposition in 5 μm C: \sim 0.027 Watts at 100 MeV, 0.01 mA

•
$$\Delta T \sim \frac{P/t}{4\pi\lambda} [1 + \ln(R/r)] \ (\lambda \sim 70 \ {
m W/m-K})$$

- At R=1 cm, r=0.1 mm, t=5 microns, $\Delta T\sim 34^\circ {
 m C}$
- $P = \epsilon \sigma A T^4$: $A \sim 2 imes \pi \cdot (1 \text{ mm})^2$, $\epsilon = 0.7 o \text{T} \sim 574 \text{ K}$

Positron Cross-Section at fixed angles

Ratio of hard/soft cross-sections (Bhabha)

Positron Cross-Section at high photon energies

Elastic vs Møller Cross-Sections

