

The P2 Experiment at MESA

Sebastian Baunack

Johannes Gutenberg-Universität Mainz

Intense Electron Beams Workshop

June 17 - 19, 2015

Cornell University

External target experiments: Challenges and opportunities Sebastian Baunack

Johannes Gutenberg-Universität Mainz

Intense Electron Beams Workshop

June 17 - 19, 2015

Cornell University

External target experiments

- Opportunities: Measurement of very small asymmetries with parity violating electron scattering
- Challenges: Technique, form factor input, targets
- Studies for the upcoming P2 experiment at MESA

Concept of an ERL

Mainz energy recovering superconducting accelerator

1.3 GHz c.w. beam Normal conducting injector LINAC Superconducting cavities in recirculation beamline

ERL mode (Energy recovering mode): 10 mA, 100 MeV unpolarized beam (pseudo internal gas hydrogen target L~10³⁵ cm⁻²s⁻¹)

EB mode (External beam): 300 μ A, 150 MeV polarized beam (liquid Hydrogen target L~10³⁹ cm⁻²s⁻¹)

Concept of an ERL

Concept of an ERL

Parity violating electron scattering

Parity violating electron scattering

- polarisation measurement

Experiment	Luminosity (10 ³⁸ s ⁻¹ cm ⁻²)	Target cooling power (kW)
HAPPEX	2.9	0.5
A4	0.5	0.2
G0	2.1	0.4
Qweak	16	2.8
P2	24	4.0
Moller	30	5.0

Experiment	Luminosity (10 ³⁸ s ⁻¹ cm ⁻²)	Target cooling power (kW)
HAPPEX	2.9	0.5
A4	0.5	0.2
G0	2.1	0.4
Qweak	16	2.8
P2	24	4.0
Moller	30	5.0

Opportunity! Measure tiny asymmetries in ppb range

	Experiment	Luminosity (10 ³⁸ s ⁻¹ cm ⁻²)	Target cooling power (kW)
	HAPPEX	2.9	0.5
	A4	0.5	0.2
	G0	2.1	0.4
	Qweak	16	2.8
<	P2	24	4.0
	Moller	30	5.0
Opp Mea in p	portunity! asure tiny asymme opb range	etries in the h	nge! nergy deposition hydrogen target

PVES and the weak mixing angle $sin^2\Theta_W(\mu)$

At low momentum transfer:

$$\underline{\mathbf{Q}^{2} \rightarrow 0}: \quad A_{PV} = \frac{-G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} \left(Q_{W}(p) - F(Q^{2})\right)$$

Weak charge of the proton: $Q_w(p) = 1 - 4\sin^2(\theta_w)(\mu)$

Proton structure: $F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$

PVES and the weak mixing angle $sin^2\Theta_W(\mu)$

At low momentum transfer:

$$\underline{\mathbf{Q}^{2} \rightarrow 0}: \quad A_{PV} = \frac{-G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} (Q_{W}(p) - F(Q^{2}))$$

Weak charge of the proton: $Q_w(p) = 1 - 4\sin^2(\theta_w)(\mu)$

Proton structure: $F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$

Weak mixing angle

The weak mixing angle / standard model relations

Relations at tree-level (classical level), e.g.,

- electric charge $e = \sqrt{4\pi\alpha} = g_1 \cos \theta_W = g_2 \sin \theta_W$
- $\cos \theta_W = M_W / M_Z$
- Muon decay constant: $G_{\mu} = \frac{\pi \alpha}{\sqrt{2} \sin^2 \theta_W M_W^2}$
- ... and many more

Including quantum corrections (perturbation theory):

•
$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2} \sin^2 \theta_W M_W^2} (1 + \Delta r)$$

with
 $\Delta r = \Delta r(\alpha, M_W, \sin \theta_W, m_{top}, M_{Higgs}, \ldots)$

into effective, running, scale-dependent parameters, denoted $\sin^2 \theta_{\text{eff}}$ or $\sin^2 \theta_W(\mu)$ where μ is a characteristic energy scale

The weak mixing angle $\sin^2\Theta_W(\mu)$

P2 (planned)

Sensitivity to a new Physics

Example: Dark Z boson

H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 89 (2014) 9, 095006

Finding a scattering angle for an experiment

PV Asymmetry vs angle, E=137 MeV

Choice of kinematics for the P2 experiment

Choice of kinematics for the P2 experiment

Beam fluctuations

А

Example:

Different positions of the beam for the helicities "+" and "-"

- Different scattering angles
- Different cross sections
- Different solid angles
- Different scattering rates
- => False asymmetries

Beam stabilization at MAMI/A4

- Analog feedback loops
- · Beam energy 315 MeV
- Helicity flip 50 Hz

Which uncertainty contribution to A_{PV} would be realistic with the existing MAMI technique after 10.000 hours of data taking?

Helicity correlated beam parameter	Expected average after 10.000 hours	Uncertainty contribution after 10.000 hours
Beam intensity asymmetry	23 ppb	11 ppb
Beam position difference	7 nm	5 ppb
Beam energy difference	0.04 eV	< 0.1 ppb

Which uncertainty contribution to A_{PV} would be realistic with the existing MAMI technique after 10.000 hours of data taking?

Helicity correlated beam parameter	Expected average after 10.000 hours	Uncertainty contribution after 10.000 hours
Beam intensity asymmetry	23 ppb	11 ppb
Beam position difference	7 nm	5 ppb
Beam energy difference	0.04 eV	< 0.1 ppb

Which uncertainty contribution to A_{PV} would be realistic with the existing MAMI technique after 10.000 hours of data taking?

Helicity correlated beam parameter	Expected average after 10.000 hours	Uncertainty contribution after 10.000 hours
Beam intensity asymmetry	23 ppb	11 ppb
Beam position difference	7 nm	5 ppb
Beam energy difference	0.04 eV	< 0.1 ppb

Which uncertainty contribution to A_{PV} would be realistic with the existing MAMI technique after 10.000 hours of data taking?

Helicity correlated beam parameter	Expected average after 10.000 hours	Uncertainty c after 10.000 h	ontribution ours
Beam intensity asymmetry	23 ppb	11 ppb	8
Beam position difference	7 nm	5 ppb	8
Beam energy difference	0.04 eV	< 0.1 ppb	\odot

Which uncertainty contribution to A_{PV} would be realistic with the existing MAMI technique after 10.000 hours of data taking?

Requirement from the experiment: $\Delta A < 0.1$ ppb

Helicity correlated beam parameter	Expected average after 10.000 hours	Uncertainty co after 10.000 h	ontribution ours
Beam intensity asymmetry	23 ppb	11 ppb	8
Beam position difference	7 nm	5 ppb	8
Beam energy difference	0.04 eV	< 0.1 ppb	\odot

Improvements for the new accelerator MESA:

- Digital feedback loops (FPGA based)
- Stabilizations directly on the beam differences / asymmetries
- Increased bandwidth / sensitivity for the beam monitors

Test of new feedback techniques already started with 180 MeV beam at MAMI

readout and control of beamline elements: XYMOs (beam position monitors), fast steerers

Installations at MAMI

Test of new feedback techniques already started with 180 MeV beam at MAMI

Choice of kinematics for the P2 experiment

Form factor input

Parity violating asymmetry

$$A_{PV} = \frac{-G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W(p) - F(Q^2))$$

Vector coupling without strangenes

$$F_{EM}\left(Q^{2}\right) = \frac{\varepsilon G_{E}^{p} G_{E}^{n} + \tau G_{M}^{p} G_{M}^{n}}{\varepsilon \left(G_{E}^{p}\right)^{2} + \tau \left(G_{M}^{p}\right)^{2}}$$

Axial coupling

$$F_{axial}\left(Q^{2}\right) = \frac{(1-4s_{z}^{2})\sqrt{1-\varepsilon^{2}}\sqrt{\tau(1+\tau)}G_{M}^{p}G_{A}}{\varepsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}$$

Vector coupling, strangeness contribution

$$F_{Strange}\left(Q^{2}\right) = \frac{\varepsilon G_{E}^{p} G_{E}^{s} + \tau G_{M}^{p} G_{M}^{s}}{\varepsilon \left(G_{E}^{p}\right)^{2} + \tau \left(G_{M}^{p}\right)^{2}}$$

$$\tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \frac{1}{1+2(1+\tau)\tan^2\frac{\theta}{2}}$$

Form factor input

Parity violating asymmetry

$$A_{PV} = \frac{-G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W(p) - F(Q^2))$$

Vector coupling without strangenes

Axial coupling

$$F_{EM}\left(Q^{2}\right) = \frac{\varepsilon G_{E}^{p} G_{E}^{n} + \tau G_{M}^{p} G_{M}^{n}}{\varepsilon \left(G_{E}^{p}\right)^{2} + \tau \left(G_{M}^{p}\right)^{2}}$$

$$F_{axial}\left(Q^{2}\right) = \frac{(1-4s_{z}^{2})\sqrt{1-\varepsilon^{2}}\sqrt{\tau(1+\tau)}G_{M}^{p}G_{A}}{\varepsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}$$

$$F_{Strange}\left(Q^{2}\right) = \frac{\varepsilon G_{E}^{p} G_{E}^{s} + \tau G_{M}^{p} G_{M}^{s}}{\varepsilon \left(G_{E}^{p}\right)^{2} + \tau \left(G_{M}^{p}\right)^{2}}$$

Largest contributions to the uncertainty

Vector coupling, strangeness contribution

$$\tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \frac{1}{1+2(1+\tau)\tan^2\frac{\theta}{2}}$$

Experimental data for G_M^s

 SAMPLE:
 D. T. Spayde et al., Phys.Rev.Lett. 84 (2000) 1106-1109

 Happex:
 A. Acha et al., Phys.Rev.Lett. 98 (2007) 032301

 G0:
 D. S. Armstrong et al., Phys.Rev.Lett. 95 (2005) 092001

 D. Androic et al., Phys.Rev.Lett. 95 (2010) 092001

 F. E. Maas et al., Phys.Rev.Lett. 93 (2004) 022002

S. Baunack et al., Phys.Rev.Lett. 102 (2009) 151803

Experimental data for G_A

- D. Androic et al., Phys.Rev.Lett. 95 (2005) 092001
- A4: Paper in progress

A4-IV: about 700 hours deuterium data on tape

Can we measure G_M^s and G_A with better precision?

Sketch of P2 main experiment:

- Liquid hydrogen target
- Elastic ep-scattering $\Delta \Theta = 20^{\circ}$
- Measurement time: T=10.000 h

• Luminosity $L=2.5 \cdot 10^{39} \frac{1}{s \cdot cm^2}$

P2 back angle measurement!

Back angle measurements: Determination of G_M^s and G_A

P2 back angle measurement

Imagine to place an A4-like detector ($\Delta\Omega$ =0.63 sr, 140° ≤ Θ ≤ 150°) into the P2 setup: A_{PV} ≈ 7.5 ppm

Parameter	P2 back angle experiment
Integrated luminosity	8.7·10 ⁷ fb ⁻¹
	ΔA_{stat} = 0.03 ppm
HC correlated false asymmetries	$\Delta A_{HC} = 0.0001 \text{ ppm}$
Polarimetry	$\Delta P = 0.5\%$
	$\Delta A_{Pol} = 0.04 \text{ ppm}$
Uncertainty in the measured asymmetry	∆A _{tot} = 0.05 ppm (0.7 %)

Ideal solution: Separate measurements with hydrogen and deuterium target

Possible uncertainties of G_A and G_M^s with P2 back angle measurement

- Q²=0.06 GeV²
- Numerical determination of precision
- Choose randomly EM form factors and asymmetries according to their uncertainties and calculate G_A and G_M^s
- Correlation of electromagnetic form factors input taken into account

Measurements with other targets at P2

Sensitivity of the weak charges to New Physics

Parametrization of "new" quantum loop corrections:

¹²C measurement at P2

@ Beam energy E = 150 MeVScattering angle $\Theta = 40^\circ + 9^\circ$ Target density $d = 5g/\text{cm}^2$ Measuring time t = 2500h Beam current I = 150μ A

We can achieve
$$\frac{\delta \sin^2 \Theta_W}{\sin^2 \Theta_W} = 0.3\%$$

$$A_{PV} = \frac{G_F \cdot Q^2}{\sqrt{2}\pi\alpha} \sin^2 \Theta_W \longrightarrow \frac{\delta A_{PV}}{A_{PV}} = \frac{\delta Q_W^C}{Q_W^C} = \frac{\delta \sin^2 \Theta_W}{\sin^2 \Theta_W} = 0.3\%$$
$$Q_W^C = -24 \sin^2 \Theta_W \longrightarrow \frac{\delta A_{PV}}{\Delta_{PV}} = \frac{\delta Q_W^C}{Q_W^C} = \frac{\delta \sin^2 \Theta_W}{\sin^2 \Theta_W} = 0.3\%$$

¹²C measurement at P2

 $\chi = m_{Z}^{2}/m_{Z}^{2}$

 $Q_{W}^{c} = -5.5080(5)[1 - 0.003T + 0.016S - 0.034X(Q^{2}) + \chi]$ $Q_{W}^{p} = +0.0708(9)[1 + 0.150T - 0.200S + 0.4X(Q^{2}) + 4\chi]$

P2 concept: Solenoid spectrometer

- Separation of charged background from electrons scattered elastically off protons with a solenoid spectrometer
- Superconducting coil: Radius ~ 1 m, Axial length ~ 3 m
- Magnetic field ~ 0.5 T
- Quartz-Cherenkov detectors in the stray field
- Full azimuth may be used to collect statistics
- Compact setup, suits our spatial requirements

P2 concept: Solenoid spectrometer

Full GEANT4 simulation:

- Interface with CAD program (CATIA)
- Tests of various setups
- See talk of D. Becker for details

Detector development for P2

Cherenkov medium: Fused Silica (aka Quartz):

- Exceptional transmittance for UV
- Very good radiation hardness

Prototype detector tests at MAMI

Detector module prototype tested at MAMI

What is needed

- Cherenkov medium (quartz)
- Wrapping material for quartz blocks
- Reflecting foil for light guides
- PMTs
- DAQ

Prototype detector tests at MAMI

<u>Summary</u>

- Parity violating electron scattering: Ideal application for external target experiments
- Hydrogen target: Determination of the weak mixing angle at low Q² with high precision
- Technical challenges: Due to high rates and small asymmetries
- Additional benefits: Measurement of G_A and G_M^s, carbon target
- P2: Measurement of weak mixing angle at MESA, work in progress

Example: P.E. yield for different polishings and scattering angles

