Axion Searches Overview

Andrei Afanasev The George Washington University Washington, DC

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

Plan of Talk

Introduction to a Dark Matter problem

- > Axions as Dark Matter candidates
- Laboratory searches
- Solar/cosmic axion searches

WASHINGTON, DC

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

Matter/Energy Budget of Universe

Stars and galaxies are only ~0.5%
 Neutrinos are ~0.3–10%
 Rest of ordinary matter (electrons and protons) are ~5%
 Dark Matter ~30%
 Dark Energy ~65%
 Anti-Matter 0%

THE GEORGE WASHINGTON UNIVERSITY

Observational Evidence of Dark Matter

- Fritz Zwicky (1933): Dispersion speed of galaxies in a Coma Cluster too high => `dynamic mass' is ~400 times larger than `luminous mass'
- S. Smith (1936): similar observation in Virgo Cluster; x200 excess in mass, can be explained by presence of additional matter between the galaxies
- Vera Rubin (1970): Measured rotation of spiral galaxies, discovered stars on the periphery revolve too fast around the galaxy center=> an invisible halo carries ~9<u>0% of galaxy Mass</u>

Gravitational lensing: 3D map of observable Universe from Hubble telescope

R. Massey et al, Nature 445, 286 (2007):
Dark Matter Maps Reveal Cosmic Scaffolding
Area of 1.6 deg²
~1/2 million galaxies

Chandra X-ray observatory data'06 (see chandra.harward.edu)

- Galaxy cluster 1E
 0657-56 (`bullet
 cluster')
- Dark matter (blue) not slowed by the impact; while hot gas (red) is slowed/ distorted by drag force

THE GEORSE Paration during WASHINGT OIllision UNIVERSITY

washinghttp://chandra.harvard.edu/photo/2006/1e0657/1e0657_bullett_anim_lg.mov

More dark matter evidence (2007)

 Ring of dark matter formed in collision of two galaxy clusters

STScI-PRC07-17b

WASHINGTON, DC

UNIVERSITY

THE GEORGE WASHINGTON

What is Dark Matter?

 An unknown elementary particle that only weakly interacts with ordinary matter

- May be light (~10⁻³ eV) "axion" (or axion-like particle, ALP)
- > May be heavy (~10⁶ eV) "WIMP"
 - Evidence reported April' 08 by DAMA Collab., observed semi-annual variations of electromagnetic background in Nal detector

http://neutrino.pd.infn.it/NO-VE2008/prog-NOVE.htm

• CDMS (2009): two candidate events

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

What is Dark Matter? Particle interpretation: (Still unknown) elementary particles that interact only weakly with `normal' matter One of the candidates: **Axion** - also addresses a *strong CP problem* in QCD

light, long-lived pseudoscalar boson.

WASHING

Open mass range for axions

The combination of accelerator searches, astrophysical, and cosmological arguments leaves open a search window

THE G

WALIPSSTATULAB is a laser-based laboratory experiment that searches for axion-UNLIKE particles with masses in the range of milli-eV

CAST experiment

Differential Axion Spectrum

Mean energy: $\langle E \rangle = 4.2 \text{ keV}$

Axion Luminosity:

 $L_{\rm a} = 1.9 \times 10^{-3} L_{\odot}$ Axion flux: $\Phi_{\rm a} = 3.8 \times 10^{11} \,{\rm cm}^{-2} \,{\rm s}^{-1}$

Have seen no effect washington UNIVERSITY

Uses LHC prototype dipole, looks for axions from the sun regenerating photons in the xray region. K. Zioutas *et al.*, PRL 94, 121301 (2005)

Photon Regeneration in `Light Shining through a Wall' (LSW)

- Photon-axion conversion in presence of magnetic field
- Photon-(massive) paraphoton oscillation (no magnetic field)
- Photon-(massless) paraphoton conversion in magnetic field via quantum loop of minicharged particles (MCP)

THE GEORGE WASHINGTON UNIVERSITIVEV (Fermilab), ALPS(DESY), OSCAR (CERN), PVLAS (INFN)

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

Jefferson Lab is Located in Newport News, Virginia

JLAB's Free Electron Laser Produced up to 14kW of continuous light at 1.6 micron

wavelength

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Andrei Afanasev, Intense Electron Beams Workshop,

JLAB FEL: Used for LIPSS experiment

More info on JLAB FEL

WASHINGTON

Veil etaale ANISA, At 557 eco (2006); kswyww.ilabyorg/F1F2015

WASHINGTON, DC

THE GEORGE

LIPSS experiment schematic

THE GEORGE WASHINGTON UNIVERSITY

LIPSS Result on Axion-Like Particle

AA et al (LIPSS Collab), Phys Rev Lett 101, 120401 (2008)

THE MOSTON WASHINGTON UNIVERSTON WASHINGTON WASHING COUPLING PROBED (`B²' interaction)

New Constraint on Photon Paraphoton Mixing

- Hidden-sector U(1)_H symmetry: Paraphotons
 L.B. Okun, Sov Phys JETP 56, 502 (1982); B. Holdom,
 Phys Lett B 166, 196 (1986) "Holdom's Boson" or HoBo
 - For the latest, see Ahlers et al, PRD 78, 075005 (2008); Abel et al, JHEP07, 124 (2008)

LSW technique

•AA et al, Phys.Lett.B 679, 317 (2009) LIPSS observed no oscillations •Best LSW constraints due to high THE GEORGE WASHINGTON, DC

Photon-Paraphoton Mixing

- LIPSS results Phys.Lett. B679, 317(2009) vs other constraints:
 - Achieved the highest sensitivity in milli-eV mass range (plot compiled in arXiv:0905.4159)

THE GROADS results in a new constraint on mini-charged WASHINGTOR TICLE (MCP) mass and charge, see formalism in UNIVERSITY WASHINGTON, DC

Low-mass Paraphoton Search

• Evaluated for JLAB FEL, see Baker's talk at Searching for a New Gauge Boson at Jlab, September 20-21, 2010 (mass < 25 keV)

UNIVERSITY WASHINGTON, DC

Axion Parameters (PDG14)

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

Combined Exclusion Ranges (PDG14)

