### Summary Report Dark Matter, Dark Photons, Axions WG Report 2: Axions

Andrei Afanasev George Washington University, Washington, D.C. Intense Electron Beams Workshop (June 16-19, 2015) 5 talks presented on axions and axion-like particle searches:

- Gianpaolo Carosi (Livermore) Hunting the Dark Matter Axion with the ADMX
- Derek Kimball (Cal State) CASPEr: the Cosmic Axion Spin Precession Experiment
- Keith Baker (Yale) The dark sector at low and at high energies
- William Wester (Fermilab) Laser Searches for New Particles at Fermilab
- Andrei Afanasev (GWU) Axion Searches Overview

### Hunting the Dark Matter Axion with the ADMX experiment

Intense Electron Beam Workshop - Cornell

June 18<sup>th</sup>, 2015

#### Lawrence Livermore National Laboratory

Gianpaolo Carosi



LLNL-PRES-668218

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

### The axion.

- It's a pseudoscalar ( $\pi^{\circ}$ -like), extremely light and weakly coupled
- $2\gamma$  coupling (Primakoff effect) : Key to possible detection



# Variety of experiments\*...

### • Low noise amplifiers (ADMX) and Rubidium Atoms (CARRACK)

- Look for dark matter axions (low mass) converting to photons in B-Field
- Will focus today on ADMX project.
- Solar Observatories
  - X-Ray (**CAST**) and Germanium detectors
    - Look for axions generated from the sun
    - Higher coupling required than for DM axions.





### Lab experiments

- Photon regeneration and polarization changes (**PVLAS**)
  - Look for production of axions from light passing through **B**-field
  - Higher coupling required.
  - Ultralight axions (nano-eV) (NMR / LC Circuit)





\*See August 2010 Physics Today for experimental overview

### **ADMX Experimental Apparatus**





## CASPEr: the Cosmic Axion Spin Precession Experiment Derek F. Jackson Kimball



## Axion couplings

$$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}$$



Coupling to electromagnetic field





NMR resonant spin flip when Larmor frequency  $2\mu B_{\rm ext} = \omega$ 

# EDM coupling to axion plays role of oscillating transverse magnetic field



Larmor frequency = axion mass  $\rightarrow$  resonant enhancement.

### **Experimental strategy**

(1) Thermally polarize spins in a cryogenic environment at high magnetic field (10 T);

(2) Scan magnetic field from 10 T  $\rightarrow$  o T; Larmor frequency decreases from 45 MHz;

(3) Integrate for about 20 ms at each frequency, a complete scan takes around 1000 s  $\approx T_1$  to complete.



# Axion/ALP-induced spin precession (axion wind)

Nonrelativistic limit of the axion-fermion coupling yields a Hamiltonian:

$$H_{\text{wind}} \approx g_{aNN} \nabla a \cdot \boldsymbol{\sigma}_N$$
.





### **Experimental sensitivity**



## dark sector searches using photons and Higgs bosons

O. K. Baker Yale University

> IEB workshop June 18, 2015





light shining through a wall can suppress background by over 20 orders of magnitude !!! kW lasers, cavities, ultra low noise detectors, ...



light with magnetic field

Sikivie (1983); Ansel'm (1985); Van Bibber et al (1987)

- kinetic mixing
- no magnetic field required
- Afanasev et al (2009)







### lsw resonant cavity searches

- Idea: exploit microwave cavities instead of optical resonators [Hoogeveen '92; Jaeckel,Ringwald'07; Caspers,Jaeckel,Ringwald '09]
- With current technology, expect increased sensitivity in certain mass range
- First test experiments have already been done (Livermore; Perth), or are setup (Daresbury; Yale)



DESY November 2, 2010





## dark sector searches using the Higgs boson



https://espace.cern.ch/atlas-phys-higgs-htogamgam/Lists/ Hgg Moriond 2013/Attachments/46/mass\_animation\_ZZ4L.gif - mass-animation





### Laser Searches for New Particles at Fermilab

William Wester Fermilab

INVIGABLE 1 SER BEAK

### GammeV Experiment

Search for evidence of a milli-eV particle in a light shining through a wall experiment to unambiguously test the PVLAS interpretation of an axion-like (pseudo-)scalar



## GammeV Limits

 Results are derived. We show 3s exclusion regions and completely rule out the PVLAS axion-like particle interpretation by more than 5s.
Pseudoscalar
Scalar



 Job is done. Limit generally improves slowly (8<sup>th</sup> root) vs. longer running time, or increased laser power, etc.

## Other new particles

A dark photon could also cause light to shine through a wall even without an external magnetic field. The GammeV null result can also be interpreted as sensitivity for a new U(1) dark photon.



Phys. Rev. D77, 095001 (2008)

 An exotic type of new particle called a <u>chameleon</u> – a scalar – Tensor interaction results in a particle whose properties depend on it's environment.

$$\mathcal{L}_{\text{int}} = -V(\phi) + \exp\left(\frac{\phi}{M_D}\right)g_{\mu\nu}T^{\mu\nu} - \frac{1}{4}\frac{\phi}{M}F_{\mu\nu}F^{\mu\nu}$$

• The chameleon mechanism (Khoury and Weltman) was originally postulated as a mechanism to account for the cosmic expansion – i.e. "a dark energy particle".

### "Particle in a Jar" / Afterglow

- Chameleon properties depend on their environment effective mass increases when encountering matter.
  - A laser in a magnetic field might have photons that convert into chameleons which reflect off of the optical windows. A gas of chameleons are trapped in a jar.
  - Turn off the laser and look for an afterglow as some of the chameleons convert back into detectable photons.



W. Wester, Fermilab, Cornell, Intense Electron Beams Workshop

### **CHASE: Chameleon Afterglow Search**



When we started to take data, we observed an afterglow that did not depend on B field (so, no evidence for chameleons). The afterglow rate did depend on temperature in a manner similar to vacuum grease. First limits for chameleons coupling to photons.



### **Axion Searches Overview**

Andrei Afanasev The George Washington University Washington, DC



Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

### Low-mass Paraphoton Search

• Evaluated for JLAB FEL, see Baker's talk at Searching for a New Gauge Boson at Jlab, September 20-21, 2010 (mass < 25 keV)



UNIVERSITY WASHINGTON, DC

### Axion Parameters (PDG14)



THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, Intense Electron Beams Workshop, Cornell University, 6/17/2015

WASHINGTON, DC

### Combined Exclusion Ranges (PDG14)

