Search for a **Dark Photon:** proposal for the experiment at VEPP–3.

I.Rachek, B.Wojtsekhowski, D.Nikolenko

IEBWorkshop Cornell University June 18, 2015

I.Rachek

Latest results of dark photon searches

I.Rachek

Latest results of dark photon searches

A' from annihilation of beam's positrons and target electrons

Kinematic correlations in annihilation

Photon energy depends on its emission angle and the mass of the 2nd particle:

$$E_{\gamma} pprox E_+ \cdot rac{1 - \mathcal{M}_A^2/s}{1 + \gamma_+ (1 - \cos heta_{\gamma})}, \qquad s = 2 m_e (E_+ + m_e)$$

for $E_+ = 500 \text{ MeV} \rightarrow \sqrt{s} = 22.6 \text{ MeV}$:

The concept of search in annihilation

- measure energy and emission angle of $\gamma\text{-quantum}$
- search for a "bump" on top of QED background
- A'-boson should appear in a missing mass spectrum as a peak above QED background:
- peak width is defined by energy and angular resolutions of the γ -detector

VEPP-3 approach

- *positron* beam repeatedly crosses the *internal* hydrogen gas target
- working with the new injector complex, which provides $2 \cdot 10^9 e^+$ per second;
- staying at injector energy $E_{e^+} = 500 \text{ MeV} \text{no energy ramping in VEPP-3}$
- 6 bunches in VEPP-3; every 10 seconds the oldest bunch is replaced by a new one with up to 2 · 10¹⁰ positrons, stored in the injector's *cooler* ring;
- designed luminosity of the experiment: 10^{33} cm⁻²s⁻¹
- special magnetic system providing free flight for $\gamma-{\rm quanta}$ from target to detector is needed
- using a segmented EM-calorimeter placed at a distance of \sim 8 m from the target
- searching for a peak in a missing mass distribution.

1st configuration for the experiment at VEPP-3

1st configuration for the experiment at VEPP-3

obvious drawbacks

- very busy space difficult to clean-up the path from the target to the calorimeter
- VEPP-3 becomes completely unavailable for other programs (SR,KEDR,VEPP-4) when the dipoles are installed

2nd configuration: The ByPass at VEPP-3

BYPASS along the 4th straight section of VEPP-3 – where the FEL was previously situated

- vacuum chamber with pumping system
- 3 dipole magnets
- 6 quadrupoles
- elements of beam diagnostics

2nd configuration: The ByPass at VEPP-3

BYPASS along the 4th straight section of VEPP-3 – where the FEL was previously situated

- vacuum chamber with pumping system
- 3 dipole magnets
- 6 quadrupoles
- elements of beam diagnostics

Photon detector

The desired specifications:

- energy resolution $\sigma_E/E \leq 5\%$ in the range $E_{\gamma} = 50 \div 500$ MeV
- angular resolution $\Delta heta \sim 0.1^\circ$
- angular acceptance in θ^{lab} : $1.5^{\circ} \div 4.5^{\circ}$ corresponds to $\theta^{CM} = 90^{\circ} \pm 30^{\circ}$

• angular acceptance in ϕ : 360°

Photon detector

The desired specifications:

- energy resolution $\sigma_E/E \leq$ 5% in the range $E_\gamma =$ 50 \div 500 MeV
- angular resolution $\Delta heta \sim 0.1^\circ$
- angular acceptance in θ^{lab} : $1.5^{\circ} \div 4.5^{\circ}$ corresponds to $\theta^{CM} = 90^{\circ} \pm 30^{\circ}$
- angular acceptance in ϕ : 360°

Calorimeter based on CsI(TI) crystals from CLEO

- 608 crystals are assembled in a "ring"
- calorimeter is placed at a distance of 8 m from the target
- based on CLEO measurements with 180 MeV positrons:
 - energy resolution $\sigma_E = 3.8\%$
 - spatial resolution $\sigma_x = 12 \text{ mm} \Rightarrow$ angular resolution: $\sigma_\theta = 0.09^\circ$

event rate at threshold 25 MeV and luminosity 10³³:

- total background rate: 850 kHz
- maximum per a crystal < 20 kHz

Main background processes

background QED processes

- positron bremmstrahlung on hydrogen
- Bhabha scattering with bremsstrahlung
- 2-photon annihilation
- 3-photon annihilation

- Part of background events can be identified and rejected.
- The rest form a smooth "substrate"; their fluctuations define a search sensitivity.
- For realistic background estimation a Monte Carlo simulation is required.
- Such simulation was performed using GEANT4 toolkit and a set of dedicated event generators.

Identification of background events

- more than one γ -quantum in calorimeter
 - a symmetrical (around $\theta^{CM} = 90^{\circ}$) calorimeter acceptance is required
 - then events of 2-photon annihilation (and partially of 3-photon one) can be identified
- veto-counter for positrons
 - bremsstrahlung is partially rejected
 - rejection efficiency depends on configuration of veto-counter

Secondary sources of background events

 large flux of bremsstrahlung photons, emitted at small angle: miss the calorimeter, but are able to produce a shower, passing 8m of air (0.026X₀) can be dumped by a blocker: 20cm-long tungsten rod at the exit of the dipole

• positrons that lost a small fraction of energy in the target are bent in the dipole magent and hit the vacuum chamber wall, producing showers.

 \Rightarrow Install:

- Pb shields wherever it is possilble;
- vacuum pocket close to magnet exit (where there is no room for Pb-shield) guiding positrons to shielded area

The configuration accepted for Monte Carlo simulation

I.Rachek

dark photon at VEPP-3

June 18, 2015

Monte Carlo: missing mass reconstruction

Data analysis is aimed at selecting events with a single cluster in the calorimeter and searching for a peak in the missing mass distribution

Monte Carlo: missing mass distributions

I.Rachek

Monte Carlo: search sensitivity

search conditions

- Beam energy $E_{e^+} = 500 \text{ MeV}$ • luminosity $\mathcal{L} = 10^{33} \text{ cm}^{-2}\text{s}^{-1} \rightarrow$
 - beam current 30 mA +
 - target thickness $5\times 10^{15}~\text{at/cm}^2$
- Run time $T = 10^7$ seconds \rightarrow half-year with 65% time utilization
- width of search window: $\pm 2\sigma_{mis}$

MC results

W_A	IVI miss WINDOW	ε
MeV	MeV	(95% CL)
5	±3.8	$9.5 imes10^{-8}$
10	± 2.0	$8.5 imes10^{-8}$
15	± 1.0	$5.4 imes10^{-8}$
20	±0.4	$3.0 imes10^{-8}$

2

I.Rachek

Search sensitivity: decay mode-independent search of A'

Invisible decay of A'

Conclusion

- A decay mode independent search for a dark photon is effective in a setup with an intense positron beam and an internal hydrogen gas target.
- Crystals from the CLEO endcap EM-calorimeter would be a good choice for the photon-detector.
- If the proposal is accepted the measurement at the ByPass at VEPP-3 can be prepared and performed in 3-4 years.
- Budker Institute has a good opportunity to contribute to the worldwide hunt for a dark photon.

Conclusion

- A decay mode independent search for a dark photon is effective in a setup with an intense positron beam and an internal hydrogen gas target.
- Crystals from the CLEO endcap EM-calorimeter would be a good choice for the photon-detector.
- If the proposal is accepted the measurement at the ByPass at VEPP-3 can be prepared and performed in 3-4 years.
- Budker Institute has a good opportunity to contribute to the worldwide hunt for a dark photon.

