

Radiabeam's high-gradient developments for accelerator applications

Nanda gopal Matavalam

RadiaBeam

Advanced Materials for Charged Particle Beams Workshop

July 16th-18th, 2025

Cornell University, Ithaca, New York

About RadiaBeam

- Spin-out of UCLA Physics Department: 2004
 - Santa Monica, California
 - Currently: ~50 employees, 30,000 ft²
- Products: accelerator components (RF structures, magnets, diagnostics), medical/industrial accelerator systems, >MeV X-ray systems
- Core competencies
 - RF optimization, design, fabrication, and testing of linear accelerator structures, microwave sources, modulators, and power electronics
 - Custom instrumentation and beamline magnets
 - Cryogenic engineering
 - Teams: R&D, Engineering, Manufacturing, Integration & Testing

RadiaBeam's capabilities

- Clean, UHV-quality manufacturing focused on copper
 - In-house machining and chemical-cleaning capabilities
 - Vacuum brazing and electron beam welding: Toll vendors
 - Inspection & testing:
 - Metrology: CMM, conventional metrology
 - Metallography: digital microscope/polishing
 - Vacuum: Leak checkers, calibrated RGA pump cart
 - Magnetics: 3-axis field mapping, vibrating wire
 - RF: dedicated lab with multiple VNA's
- 8MeV X-ray CT scanning: Refractory AM parts & large assemblies
- High pulsed power klystrons S-band, C-band

RF Testing

Detectors

Cargo inspection linac system

railroad car

High intensity linac w/bremsstrahlung

HG activities at RadiaBeam started +10 years ago

- 2013: We developed an X-band TW deflector cavity (XTD) operating at 11.424 GHz optimized for 100 MeV electron beam parameters at the BNL-Accelerator Test Facility. Peak deflecting voltage 38 MV/m at 20 MW.
- We designed, fabricated and high-power tested a high gradient S-Band accelerating structure (HGS) operating in the pi-mode at 2.856 GHz for beta=1
 - 2013: Initial high-power test at LLNL at 10Hz rep. rate, 1.3 μs, 16MW, and max field of 50MV/m
 - 2016: High power test at ANL at 30 Hz rep. rate, 2 μs, 16.7MW, and max field of 52.25 MV/m

L-band accelerating structure for RPI

- RadiaBeam is fabricating a total of 8x 1300 MHz speed of light accelerating structures for the Gaerttner Linear Accelerator at Rensselaer Polytechnic Institute (RPI).
- The first structure was delivered in 2020 and high power testing was performed at RPI in 2023.
 - Test done at three different operational modes meeting the required performance criteria (~1.65E-8 BD rate). Additional conditioning of the structure was done up to 15 MW at 5µs.
- 3 structures to be delivered by the end of the month, and 4 more by the end of the year.

Mode	RF pulse width (μs)	Peak Power (MW)	Rep. Rate (Hz)	Breakdown rate
Short pulse	3	10	700	<1.65E-8
High Avg. Power	7	10	250	1.65E-8
Low Energy	3	5	800	<1.65E-8

S-band Advanced Compact Carbon Ion Linac

- 2016: Collaboration with ANL to develop an Advanced Compact Carbon lon Linac (ACCIL) for hadron therapy. Deliver 450 MeV/u in a 45m footprint, required 50 MV/m structures for β=0.3-0.7
- 2021: We designed, fabricated, and tested a 15-cell Negative Harmonic Structure (NHS) for β=0.3 operating at 2856 MHz
 - High-power test at ANL with 30 Hz rep. rate, 700 ns, achieving 50 MV/m with 33 MW
- 2022: Upgraded NHS design for 1000 Hz rep. rate, 40 MV/m gradient with 20 MW

Parameter	Initial (built)	Flash design	
f _{m=-1}	2856 MHz		
Rep. rate	120 Hz	1000 Hz	
Group velocity	0.12-0.335 %c	0.23-0.43%	
Filling time	450 ns	287 ns	
Shunt impedance	32 MΩ/m	47 MΩ/m	
Peak RF Power	33.8 MW	20 MW	
Average RF losses	3.9 kW	5.6 kW	
Accelerating gradient	50 MV/m	40 MV/m	
Peak electric fields	160 MV/m	180 MV/m	
Pulse Heating	28 K	12 K	

NHS built for 120 Hz

NHS upgraded design for 1kHz rep. rate

S-band RF pulse compressor (SLED)

- RadiaBeam developed a 2856 MHz RF pulse compressor to produce multimegawatt peak power using a medical klystron
 - RF design based on a E-plane polarizer and a spherical cavity with Q=1×10⁵
 - Expected to generate a flat 18 MW 600 ns flat-top RF pulse with a 7 μs 5MW pulse, 62% efficiency
 - RF cold testing has been performed

Simulation S-parameters

Parameter	Value	
Frequency	2856 MHz	
Input power	5 MW	
Pulse length	7 μs	
Repetition rate	500 Hz	
Duty factor	0.4 %	
Opt. Temperature	30°C	

Measured S-parameters

C-band RadiaBeam GRIT program

- The Gamma Ray Interrogation Technique (GRIT) program focused on the development high flux hard X-ray compact Inverse Compton Scattering (ICS) sources for medical and inspection applications
- The system's main components:
 - Magma 25 laser system (collaboration with Amplitude)
 - High gradient, 100 MeV, 5712 MHz linac (collaboration with SLAC)
 - Hybrid C-band photoinjector (collaboration with UCLA)

C-band testing infrastructure overview

- 2 RF stations provide power 25 MW to hybrid gun and 50 MW to 100 MeV linac module
 - The current network supports parallel testing of an additional structure of up to 25 MW
- Laser system supports UV line for photoemission, and IR line for ICS
- Final focus and interaction system, beam dump/spectrometer beamline, and X-ray test station
- EPICS control system

C-band power stations

X-ray test area

10

C-band RF network components

- RF network is rather complex
 - 2 Canon 5.712 GHz E37212 Klystrons driven by Scandinova K300 Modulators provide 25MW & 50MW to 100Hz, 1.2μs
 - 2 Phase Shifter Power Splitters (PS2) fully designed and manufactured by SLAC
 - 8x SLAC designed High Directivity Directional Couplers (6x manufactured by RadiaBeam)
 - 3D printed loads SLAC designed and manufactured by RadiaBeam
 - Variety of loads/windows from CML/Mega/Nihon Koshua/Custom
 - Multitude of WG components built in-house
 - WR187 straights/bends/pumps outs
- Tested multiple commercial components at high power for the first time. Many windows and loads failed, providing valuable feedback to vendors for improvements.
- Developed some components in-house (directional coupler, loads, windows, all SLAC designed)
- Very productive collaboration with SLAC on C-band high power components development

C3 Cryo-High Power Testing

- 25 MW C-band power station was used to test SLAC C3 5712 MHz linac structures
- Conditioned 3x structures while monitoring breakdown rate and vacuum. Breakdown rate declined over the conditioning period.
 - SN1: Conditioned up to 15 MW, 100 Hz, 1 µs pulse width at RT
 - SN3: Conditioned up to 10 MW, 100 Hz, 1 μs pulse width at 77 K. Failure of a vacuum window stopped progress.
 - SN2: Conditioned up to 20 MW, 20 Hz, 1 μs pulse width at 77 K. ~80 hours conditioning, more run time can improve BD rate.

12

X-band EBW split accelerating structure

- We developed high-gradient X-band accelerating structure adapting the split approach and Electron Beam Welding (EBW)
 - SW 3-cell structure operating at 11.424 GHz
 - Utilized hard copper alloys to improve high-gradient performance over traditional annealed copper structures
- Test performed at SLAC with 600 ns, 60 Hz, up to 3.7 MW demonstrated 140 MV/m gradient with surface peak fields of 400 MV/m, BD rate 10⁻⁴/pulse.m
- The split feature results in higher surface fields compared to conventional structures at the same breakdown rate, it provides a great potential for cost reduction of their fabrication

Test setup at SLAC

Comparison of EBW split structure with conventional multiple cell structure at 600 ns

13

Ku-band Hand-Portable Linac

- RadiaBeam has developed a first-of-its-kind hand-portable TW Ku-band (15.1GHz) linac using a split structure approach
 - Up to 2 MeV electron energy to replace Co-57, Ir-192, Cs-137 and X-ray tubes for NDT and Nuclear Safeguard applications
 - $\sim 23 \text{ kg}, > 1 \text{ cGy/min } @ 1 \text{ m}$
 - 24 kV solid-state Marx modulator ~1.5kg
 - Uses an air-cooled Ku-band magnetron
 - Can be operated from battery or small generator
- We have achieved 1.8MeV beam at 300 Hz rep. rate

Accelerated current at the Faraday cup after bending magnet with 1.33 MeV central energy

Summary

- For over 15 years, RadiaBeam has been developing custom accelerator components from L-band to Ku-band for industrial, and medical applications. We offer comprehensive services encompassing design, manufacturing, high-power testing, and beamline testing.
- Our state-of-the-art C-band facility, capable of supporting up to 50MW, opens the door to a wide range of cutting-edge experiments and technology development programs.
- We're open to new collaborations. Come explore the possibilities with us!