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Outline

• CARIE updates
• HOM-damping accelerator structure
• Ceramic-enhanced accelerator structures
• Copper-coated cavity
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CARIE test stand status
From klystron

RF load
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CARIE C-band RF Photoinjectors

Ready for high-power test Received at LANL
H. Xu, et al., “C-band photoinjector radiofrequency cavity design for enhanced beam generation,” in Proc. IPAC 2023.
H. Xu, et al., “RF and multipactor analysis for the CARIE RF photoinjector with a photocathode insert,” in Proc. IPAC 2024.
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CARIE C-band RF Photoinjectors

nylon thread

metallic bead

Δ𝜙𝜙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = +17.4 deg

In atm. CST Measured

f0 (MHz) 5710.40 5710.39

Q0 11936 12657

Ql 6081 6722

coupl. fac β 0.963 0.883

norm. Ecath 0.989 0.957

Δϕ (deg) 180.0 171.3

Low-power test: frequency, field balance, 
and phase advance.

E. Simakov, et al., “tatus of the CARIE high gradient photocathode test facility at LANL,” in Proc. IPAC 2024.
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CARIE C-band RF Photoinjectors
(MV/m)
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Im(z)

Re(z)
5.710 GHz

5.714 GHz 5.712 GHz

Knife edge

Tip fillet radius

Flat emitting face

Enlarged gap

Q0 = 11510

Testing photocathode plug inserts.
Multipactor suppression.

1.435 inch

A. Alexander, et al., “High gradient RF photoinjector at LANL,” in Proc. IPAC 2024.

Ecath = 240 MV/m INFN-SLAC-LANL plug
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CARIE test stand for cryo-HG structure for 3 GeV H- beams

New project: 5.634 GHz 
(14×201.25 MHz), to be 
prototyped at 5.712 GHz at 
CARIE at liquid-nitrogen 
temperature.

Two-cell, room-temperature 
prototype has been conditioned 
to high gradients.

M. Zuboraj, et al., “High-gradient performance of a prototype accelerator cavity for a 3 GeV booster,” PRAB, 021001 (2024).
S. Kurennoy, et al., “Accelerating structures for high-gradient booster at LANSCE,” in Proc. NAPAC 2022.
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HOM-damping structure: NiCr plating as HOM absorber
WR187 waveguide flange

distributed RF power coupling

HOM-damping waveguide faces, 
to be deposited with NiCr layers.

four-quadrant copper brazement cooling water ports
tuning divots

CF for installing 
Faraday Cup

Damping HOMs, preserving fundamental mode, testing high-gradient performance.
D. Kim, et al., “Design study of HOM couplers f or the C-band accelerating structure,” in Proc. IPAC 2022.
H. Xu, et al., “Design of a two-cell C-band accelerator cavity with high-order mode damping,” in Proc. IPAC 2024.
M.B. Andorf, et al., “ESPPU INPUT: C3 within the ‘Linear Collider Vision’,” arXiv preprint arXiv:2503.20829, (2025).
W.H. Tan, et al., “Emittance preservation in the C3 main linear accelerator,” in NIM-A, 170660 (2025).
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HOM-damping structure: NiCr plating as HOM absorber

kA/m

0

292

146

15.0 kA/m to 38.7 kA/m H-field
2.9-K to 19.4-K NiCr T-rise

1 mm

38.7 kA/m H-field
19.4-K NiCr temperature rise

1 mm

15.0 kA/m to 38.7 kA/m H-field
2.9-K to 19.4-K NiCr T-rise

1.2 kA/m H-field
0.02-K NiCr temperature rise

1 mm

1 mm

Four-quad machining, NiCr plating, precision machining, brazing/annealing.

Figures show NiCr plating before annealing.
Plating recipe provided by SLAC.
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HOM-damping structure: Fundamental mode & HOMs

5.7105 GHz

5.7115 GHz

5.7111 GHz

Im(z)

Re(z)

Fundamental mode CST simulation Measurement

Resonant frequency 5710.4 MHz 5711.1 MHz

Unloaded quality factor Q0 13573 13329

Coupling factor β 1.00 0.98

Q0 = 1.6e3 Q0 = 8.0e3

Q0 = 1.0e4 Q0 = 7.6e2
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Ceramic-Enhanced Accelerator Structures

ceramic tube

RF couplermounting
plate

solenoid 1
solenoid 2

20 mm

TM02 mode

20%-40% higher shunt impedance;
Robust operation (tested for space environment);
Simplified manufacturing.

5.712 GHz

Trans-Tech D-3500:
𝜖𝜖𝑟𝑟 = 34.5
tan 𝛿𝛿 = 1.1 × 10−4

Euclid Techlabs BT37:
𝜖𝜖𝑟𝑟 = 37.6
tan 𝛿𝛿 = 2.8 × 10−4

J. Upadhyay, et al., “Design of a ceramic enhanced normal conducting standing wave accelerator structure for higher shunt impedance,” NIM-A, 166669 (2022).
K. Shipman, et al., “Experimental testing of a ceramic enhanced accelerator cavity,” in Proc. IPAC 2024.

Gradient: 2 MV/m with 130-W RF
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Ceramic-Enhanced TW Accel. Structures

Higher shunt impedance and 
shorter filling time than achievable 
with entirely metallic TW structure.

Trans-Tech D-3500 Ceramic CST simulation

Resonant frequency 5712.0 MHz

Phase advance 120 deg per cell

Shunt impedance 162 MΩ/m

Group velocity 3.1% c0

H. Xu, et al., “Ceramic enhanced travelling wave accelerator structure,” US Patent App. 18/779,986 (2025).
H. Xu, et al., “High-efficiency traveling-wave accelerating structure with ceramic insertion,” in Proc. IPAC 2024.
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Copper-Coated Cavity: Breakdowns vs. Bremsstrahlung

DLWG PBG
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Same iris, distinct dark currents.

Hypothesis: iterative 
enhancement of internal 
dark currents by 
bremsstrahlung 
photoelectron cycles.

Cu

Cu CuSiO2 SiO2

SiO2: Zeff = 11.4

Cu coating on
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test control
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sidewall and iris

B.J. Munroe, et al., “Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure,” in PRAB, 031301 (2016).
H. Xu, “Measurement of internal dark current in a 17 GHz, high gradient accelerator structure,” in PRAB, 021002 (2019).
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Copper-Coated Cavity: Minimizing Accelerator SWaP

• Size, Weight, and Power (SWaP) minimization for compact accelerators.
• Copper coatings of polymer matrix composites, e.g., PEEK.
• Fast fabrication and low cost.

Copper-coated PEEK accelerator cavity tests can meanwhile verify 
impact by Bremsstrahlung/internal dark currents on breakdowns.
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Summary

• C-band high-gradient research activities at LANL depend on development of 
advanced materials.

• CARIE photoinjector cavities have been fabricated. High-power test of the first 
photoinjector with planar copper cathode is starting soon.

• New project was funded to continue high-gradient activities at CARIE.
• Novel accelerator structure for damping higher-order modes is under fine-

tuning and the high-power test is starting soon.
• Ceramic-Enhanced Accelerator Structures were developed and tested up to 

hundred-watt RF power. Novel traveling-wave linac was invented.
• Copper-coated cavity minimizes SWaP for compact accelerators and can be 

used for studying emerging theories of high-gradient RF breakdowns.
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