
Programming with
the Bmad Toolkit

David Sagan
Cornell ERL / EIC group
Advisor: Georg Hoffstaetter de Torquat

2

Introduction to Bmad

What is Bmad?

Bmad is an ecosystem of:
oOpen-source toolkits (software libraries) and
oPrograms constructed with the toolkits.

32024

Booster

Bmad Simulations
Bmad has been used to study:

4

v Lattice design

v Space charge simulations
including cathode effects.

v Beam breakup (BBU) simulations

v Coherent Synchrotron Radiation
(CSR)

v Halo studies

v Microbunching evaluation

v Machine online modeling

v Spin tracking

v Intra Beam Scattering (IBS)

v Touschek scattering

v Wakefields

v Weak-strong beam-beam studies

v Phase noise on Crabbing
dynamics

v Feedback systems

v Energy ramping

v Bunch merging

v Electron cooling

v Resonant extraction

v Spin matching

v Spin resonance studies

v Invariant spin field calculations

v Dynamic aperture

v Tune scans plots

v Frequency map analysis

v Long term tracking

v Stripper foils

v Positron converters

v Injection studies

v Cathode laser shaping

v Orbit correction

v Twiss and coupling correction

v X-ray simulations

v Resonance strengths

v Normal form analysis

v Etc., Etc.

Start-to-end simulations:
Bmad can simulate an entire
accelerator complex including
injection lines, extraction lines,
dual colliding beam rings, etc.

Bmad Community

5

ü Cornell CESR ring
ü CORNELL CESR injection chain.
ü CBETA - Cornell/BNL ERL
ü CERN FCC
ü CERN LHC
ü Julich COSY ring
ü International Linear Collider (ILC)
ü BNL EIC

ü BNL SSRL
ü BNL RHIC
ü Fermilab G-2
ü Fermilab Main Injector
ü KEK SuperKEK-B
ü SLAC LCLS-II
ü Budker VEPP-4M
ü China CEPC

ü Beijing High Energy Photon Source
(HEPS)

ü TRIUMF
ü Spallation Neutron Source (SNS)
ü JLab CEBAF
ü JLab FEL
ü Frascati linear accelerator
ü Paris Synchrotron Soleil
ü ... etc ...

Bmad is open source (hosted on GitHub) and has a thriving community with a SLACK workspace
for communication and regular schools and training workshops.

Next workshop at BNL July 29th – August 2.

This has enabled people at numerous labs to be able to use Bmad to simulate many machines:

Bmad Toolkits
How can Bmad simulate so many different things?
Compared to developing from scratch, the Bmad
toolkits allow for the development of simulation
programs

ü In less time
ü With fewer bugs (due to module reuse).
ü Enable inter-program data communication (via

common lattice and beam format, and other
standardizations).

ü Since programs are modular it is easier to adapt
them to meet changing simulation needs

62024

Bmad Toolkit

Control System Programs

Lattice Design Program

Etc.

Bmad Programs
As a result of Bmad’s modular structure, a number of
simulation programs that use Bmad have been developed:

ü Tao -- General purpose simulation program
ü long_term_tracking -- Long term tracking program
ü dynamic_aperture -- Dynamic aperture program
ü CesrV -- Digital Twin for the Cornell CESR storage ring.
ü CBETA-V -- Digital Twin for the Cornell/BNL CBETA ERL
ü bbu -- RF cavity induced beam breakup instability
ü synrad3d -- Synch X-rays tracking within a vac chamber.
ü ibs_ring -- Intra beam scattering
ü tune_scan -- Tune plane scan
ü And many more...

2024 7

Tune Scan for CESR Ring Upgrade

Circles = design tunes,
Diamonds = current tunes.

BBU threshold
current for CBETA
as a function of the
phase advance
between cavities.

8

Bmad @ BNL

RCS Bunch Merging
Bunch merging while ramping in the RCS.
Simulation includes spin tracking.

2024 9

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

	0

	0.1

	0 	5000 	10000 	15000 	20000

Turn	#

Bunch	1:	z

Bunch	2:	z

	0

	0.0001

	0.0002

	0.0003

	0.0004

	0.0005

	0.0006

	0.0007

	0.0008

	0.0009

	0 	2000 	4000 	6000 	8000 	10000 	12000 	14000 	16000 	18000 	20000

Turn	#

Bunch	1:	Sigma	z
Bunch	2:	Sigma	z

 0

 10

 20

 30

 40

 50

 60

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Sx
Sz

Slow Extraction and AGS Polarization
Bmad used for:
• Booster -> NSRL slow extraction
• AGS polarization transmission
 -- Eiad Hamwi, Cornell

2024 10

Resonant Slow Extraction
AGS polarization transmission

AGS polarization transmission

Lattice Design
Bmad used for:

• Interaction region design (ESR and
HSR, layout, matching)

• HSR ring design

• Superbend calculations in the ESR
(emittance and excursion vs. lengths
of dipoles)

 -- Scott Berg, BNL

11

0

100

200

300

β A, β
B [m

]

-1

0

1

2

η X, η
Y [m

]

ERL Cooler

2024 12

Injector, Merger, Return

• Bmad used extensively for Xelera’s SBIR project (through Phase II) to
design the EIC ERL cooler, including the precooler.

• Bmad was used for the injector as well as the main lattice, including
the ERL multipass optics and start-to-end simulations.

 -- Chris Mayes, Xelera Research LLC.

Detector Solenoid Integration in
the ESR and HSR

“Detector solenoid integration faces unique requirements at
the EIC due to a large beam crossing angle and a tilt of the
ESR plane. One has to simultaneously account for orbit
excursion, transverse and longitudinal coupling, optics and
polarization. Unlike most other codes, Bmad has the tools to
consider and correct all of these aspects at the same time.
These tools greatly simplify integration of correction
elements, design optimization and visualization of the
results.”

 -- Vasiliy Morozov, ORNAL

13

Dynamic Aperture

SODOM-2

14

§ “Last summer, major questions about
hadron polarization loss during HSR
ramp.

§ In 1 week, used Bmad’s routines to
implement an Invariant Spin Field
(ISF) calculating program SODOM-2.

§ Program easily interfaced with
long_term_tracking to do ramping and
observe polarization loss.

§ Program still used today for
polarization calculations/tracking.”

 -- Matt Signorelli, Cornell

15

Simple Bmad Program

Programming Documentation

16

Code Examples

CMakeLists.txt
beam_track_example
bmad_to_opal_example
cmake_files
cmake_template_scripts
coarray_example
construct_taylor_map
csr_example
dispersion_simulation
em_field_query_example
lapack_examples
lattice_geometry_example

mpi_mp
multi_turn_tracking_example
parallel_track_example
particle_track_example
plot_example
production
ptc_layout_example
ptc_spin_orbital_normal_form
searchf.namelist
simple_bmad_program
spin_amplitude_dependent_tune
spin_matching

17

~/Bmad/bmad_dist> ls code_examples/

Sanity Check: accinfo
MacBook-Pro-3:~/Downloads/bta_lattice_2> accinfo
DIST_DEBUG=/Users/dcs16/Bmad/bmad-ecosystem/debug/bin
DIST_OS=Darwin
DIST_BUILD=TRUE
DIST_F90=gfortran
DIST_UTIL=/Users/dcs16/Bmad/bmad-ecosystem/util
DIST_BASE_DIR=/Users/dcs16/Bmad/bmad-ecosystem
DIST_ARCH=arm64
DIST_EXE=/Users/dcs16/Bmad/bmad-ecosystem/production/bin
DIST_F90_REQUEST=gfortran
DIST_OS_ARCH=Darwin_arm64
ACC_EXE=/Users/dcs16/Bmad/bmad-ecosystem/production/bin
ACC_CMAKE_VERSION=3.13.2
ACC_ENABLE_SHARED_ONLY=Y
… etc …

18

19

Bmad manual
29.2 A First Program

20

Directory Setup for Custom Programs

21

<Root Dir>

Create this outside of Bmad
repository directory tree!!
Name can be anything.

<project_dir1>production debug

bin includelib map modules

CMakeLists.txt cmake.xxx source_file.f90 production debug

Created by CMake

Exe in here

<project_dir2>

bin

Setup

1. Create <root_dir> directory and <project_dir> subdirectories.
2. Copy files from:

 $DIST_BASE_DIR/code_examples/simple_bmad_program/
to:
 <project_dir>

22

Files:
CMakeLists.txt
README
cmake.simple_bmad_program
lat.bmad
layout.bmad
simple_bmad_program.f90

Cmake Build System

23
Cmake.org

CMakeLists.txt File

cmake_minimum_required(VERSION $ENV{ACC_CMAKE_VERSION})
project(ACC)

set(EXE_SPECS
 cmake.simple_bmad_program
)

include($ENV{ACC_BUILD_SYSTEM}/Master.cmake)

24

Can add to this list to
create multiple exes

cmake.simple_bmad_program File

set(EXENAME simple_bmad_program)
set (SRC_FILES
 simple_bmad_program.f90
)

set (LINK_LIBS
 bmad
 sim_utils
 ${ACC_BMAD_LINK_LIBS}
)

25

Can glob

Compile Program
MacBook-Pro-3:~/Bmad/test/simple> mk

-- The C compiler identification is GNU 12.3.0
-- The CXX compiler identification is GNU 12.3.0
-- Checking whether C compiler has -isysroot
-- Checking whether C compiler has -isysroot - yes
-- Checking whether C compiler supports OSX deployment target flag
-- Checking whether C compiler supports OSX deployment target flag - yes
 … etc., etc. …
-- Build files have been written to: /Users/dcs16/Bmad/test/simple/production
[50%] Building Fortran object CMakeFiles/simple_bmad_program-exe.dir/simple_bmad_program.f90.o
[100%] Linking Fortran executable /Users/dcs16/Bmad/test/production/bin/simple_bmad_program
-macosx_version_min has been renamed to -macos_version_min
[100%] Built target simple_bmad_program-exe

/Users/dcs16/Bmad/test/simple/production Compile/Link time: 9.00sec

26

Run Program
MacBook-Pro-3:~/Bmad/test/simple> ../production/bin/simple_bmad_program
[INFO] bmad_parser:
 Parsing lattice file(s). This might take a minute or so...

[INFO] bmad_parser:
 Created new digested file

[MESSAGE | 2024-JUL-30 23:07:19] bmad_parser:
 Lattice parse time(min): 0.00
 Ix Name Ele_type S Beta_a
 0 BEGINNING Beginning_Ele 0.0000 0.9379
 1 IP_L0 Marker 0.0000 0.9379
 2 CLEO_SOL#3 Solenoid 0.6223 1.3472

 … etc., etc. …
 8 DET_01W Marker 2.4934 28.5769
 9 D004 Drift 2.9240 48.4524

 10 Q01W Quadrupole 3.8740 66.8800

27

Program Output Continued
!---
! Information on element: CLEO_SOL

Element # 872
Element Name: CLEO_SOL
Key: Solenoid
S_start, S: 766.671421, 1.755000
Ref_time_start, Ref_time: 2.557341E-06, 5.854050E-09

Attribute values [Only non-zero values shown]:
 1 L = 3.5100000E+00 m 31 L_SOFT_EDGE = 0.0000000E+00 m
 3 R_SOLENOID = 0.0000000E+00 m
 5 KS = -8.4023386E-02 1/m 49 BS_FIELD = -1.4823578E+00 T

 10 FRINGE_TYPE = None (1) 11 FRINGE_AT = Both_Ends (3)
 13 SPIN_FRINGE_ON = T (1)
 17 STATIC_LINEAR_MAP = F (0)
 47 PTC_CANONICAL_COORDS = T (1)
 53 P0C = 5.2890000E+09 eV BETA = 1.0000000E+00
 … etc., etc. …

28
28

Other compile commands

mk cleaner -- Remove intermediate production files

mkd -- Compile debug version
mkd cleaner -- Remove intermediate debug files

29

30

Customizing Tao to be a
Digital Twin

Cornell-BNL CBETA Machine

31

Cornell/BNL CBETA Machine Injection Region

32

6 MeV

42, 78, 114, 150 MeV

Mirror Merger

Injector Merger

Diagnostics
R1

R2

R3

R4

CBETA Control System Flow Chart

33
33

■ CBETA: Cornell – Brookhaven ERL
under development at Cornell.

■ CBETA-V: Customized version of Tao
for online modeling of CBETA.

■ CBETA-V/Tao is used for:
– Online modeling.
– Offline modeling of online system.
– Lattice design. CBETA-V

EPICS
controls

EPICS beam
properties

Matlab, python, EDM, etc.

EPICS
measurements

Lattice
File Storage

Calibration
ConstantsGPT

[*For illustrative purposes only. Don’t take this too seriously!]

Data Storage
[Orbits, etc.]

CBETA

Implementors: Colwyn Gulliford, Adam Bartnik, Scott Berg, David Sagan

Bottom Line: Using Tao as a starting point for
CBETA-V enabled the development of a
flexible digital twin in less time and with fewer
bugs.

Python Python

Extending Tao to Model the NOvA Ring

34

Setup and Run

1. Copy the files from:
 $DIST_BASE_DIR/bmad-doc/tao_examples/custom_tao_with_measured_data
to:
 <project_dir2>

2. mk
3. ../production/bin/ping_tao

35

36

Miscellaneous

Totalview Debugger

37

TotalView & NERSC

38

Custom Routines

!+
! Subroutine track1_custom (orbit, ele, param, err_flag, finished, track)
!
! Prototype routine for custom tracking.
!

39

Interface to C++ and Python

40

Bmad Manual: Chapter 39

Python structure translation: In development with PyTao (Ken Lauer – XLight)

41

Thank You

