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▸ A new algorithm for adaptive Monte Carlo integration             
(J. Comput. Phys. 27 (1978) 192, 1446 citations) 

▸ Exclusive processes in QCD: Evolution equations for hadronic 
wave functions and the form-factors of mesons (with S.J. 
Brodsky, Phys. Lett. B 87 (1979) 359, 1535 citations) 

▸ Exclusive processes in perturbative QCD (with S.J. Brodsky, 
Phys. Rev. D 22 (1980) 2157, 4066 citations) 

▸ On the elimination of scale ambiguities in perturbative QCD 
(with S.J. Brodsky and P.B. Mackenzie, Phys. Rev. D 28 (1983) 
228, 1298 citations) 

▸ Effective Lagrangians for bound state problems in QED, QCD 
and other field theories (with W.E. Caswell, Phys. Lett. B 167 
(1986) 437, 1321 citations)  

▸ Rigorous QCD analysis of inclusive annihilation and 
production of heavy quarkonium (with G.T. Godwin and E. 
Braaten, Phys. Rev. D 51 (1995) 1125, 2955 citations) 

▸ Heavy quark bound states in lattice QCD (with B.A. Thacker, 
Phys. Rev. D 43 (1991) 196, 464 citations) 

▸ On the viability of lattice perturbation theory (with P.B.  
Mackenzie, Phys. Rev. D 48 (1993) 2250, 1201 citations)  

▸ High precision lattice QCD confronts experiment (HPQCD, 
UKQCD, MILC & Fermilab Lattice collaborations, Phys. Rev. 
Lett. 92 (2004) 022001, 466 citations)
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The Power of Effective Field Theories

PUSHING THE LUMINOSITY FRONTIER - GOLDEN AGE OF HEAVY-QUARK THEORY

▸ Tremendous experimental advances: 

▸ 1. generation: ARGUS & CLEO, LEP expts. 

▸ 2. generation: BaBar & Belle, LHCb, CMS, … 

▸ 3. generation: Belle II, LHCb upgrade, … 

▸ Precise measurement of CKM elements 
 involving third-

generation quarks 

▸ Precise determinations of angles (CP violation) 

▸ New-physics searches using FCNC processes

|Vcb | , |Vub | , |Vtd | , |Vts |

CP- Violation in the Renormalizable Theory of Weak Interaction 657 

Next we consider a 6-plet model, another interesting model of CP-violation. 
Suppose that 6-plet with charges (Q, Q, Q, Q -1, Q -1, Q -1) is decomposed into 
SUweak (2) multiplets as 2 + 2 + 2 and 1 + 1 + 1 + 1 + 1 + 1 for left and right com-
ponents, respectively. Just as the case of (A, C), we have a similar expression 
for the charged weak cur;rent with a 3 X 3 instead of 2 X 2 unitary matrix in Eq. 
(5). As was pointed out, in this case we cannot absorb all phases of matrix 
elements into the phase convention and can take, for example, the following 
expression: 

( 
cos 81 -sin 81 cos 8a 
sin 81 cos 82 cos 81 cos 82 cos 83 - sin 82 sin 83ei3 

sin 81 sin 82 cos 81 sin 82 cos 8a +cos 82 sin 8aeio 

-sin 81 sin 8a ) 
cos 81 cos 82 sin 8a +sin 82 cos 83eia . 
cos 81 sin 82 sin 8a- cos 82 sin 8aeio 

(13) 

Then, we have CP-violating effects through the interference among these different 
current components. An interesting feature of this model is that the CP-violating 
effects of lowest order appear only in L1S'?"=O non-leptonic processes and in the 
semi-leptonic decay of neutral strange mesons (we are not concerned with higher 
states with the new quantum number) and not in the other semi-leptonic, L1S=O 
non-leptonic and pure-leptonic processes. 

So far we have considered only the straightforward extensions of the original 
Weinberg's model. However, other schemes of underlying gauge groups and/ or 
scalar fields are possible. Georgi and Glashow's model4l is one of them. We 
can easily see that CP-violation is incorporated into their model without introduc-
ing any other fields than (many) new fields which they have introduced already. 

References 

1) S. Weinberg, Phys. Rev. Letters 19 (1967), 1264; 27 (1971), 1688. 
2) Z. Maki and T. Maskawa, RIFP-146 (preprint), April 1972. 
3) P. W. Higgs, Phys. Letters 12 (1964), 132; 13 (1964), 508. 

G. S. Guralnik, C. R. Hagen and T. W. Kibble, Phys. Rev. Letters 13 (1964), 585. 
4) H. Georgi and S. L. Glashow, Phys. Rev. Letters 28 (1972), 1494. 
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PUSHING THE LUMINOSITY FRONTIER - GOLDEN AGE OF HEAVY-QUARK THEORY
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▸ Matching the incredible precision of the       
B-factories required a revolution in theory 

▸ Concerted effort of theory community 
was an important consequence 
Breakthrough came from using effective 
field theories (EFTs): 

▸ , HQET, NRQCD, QCDF, SCET 

▸ SCET later became a versatile tool for 
addressing difficult LHC theory problems

ℋweak
eff

3

PUSHING THE LUMINOSITY FRONTIER - GOLDEN AGE OF HEAVY-QUARK THEORY
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EFFECTIVE WEAK HAMILTONIAN

▸ Systematic method to separate short-
distance effects (weak scale and beyond) 
from long-distance hadronic dynamics  

▸ Nowadays embedded into SMEFT and its 
low-energy variant LEFT 

▸ But: challenge is to evaluate hadronic 
matrix elements of the quark-gluon 
operators  in all but simplest casesQi(μ)
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FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)–(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the∆S = 1 and∆B = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operatorsQ7 −Q10. These generalized hamiltonians are given in
(VII.1) and (VII.37) for ∆S = 1 and ∆B = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of QED effects. Consequently the coef-
ficients of the operators Q1 − Q6 given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for KL → π0e+e− will be presented. It is given in
(VIII.1). This hamiltonian can be considered as a generalization of the∆S = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7V and Q7A. This generalization
does not modify the numerical values of the∆S = 1 coefficients Ci (i = 1, . . . , 6) given in section
VI.

In section IX we will discuss the effective hamiltonian for B → Xsγ. It is written down in
(IX.1). This hamiltonian can be considered as a generalization of the∆B = 1 hamiltonian (VI.32)
to include the magnetic penguin operators Q7γ and Q8G. This generalization does not modify the
numerical values of the ∆B = 1 coefficients Ci (i = 1, . . . , 6) from section VI.
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Qq
1 =

(
b̄iqj

)

V−A
(q̄jdi)V−A ,

Qq
2 =

(
b̄q
)

V−A
(q̄d)V−A ,

Q3 =
(
b̄d
)

V−A

∑

q

(q̄q)V−A , (VI.33)

Q4 =
(
b̄idj

)

V−A

∑

q

(q̄jqi)V−A ,

Q5 =
(
b̄d
)

V−A

∑

q

(q̄q)V+A ,

Q6 =
(
b̄idj

)

V−A

∑

q

(q̄jqi)V+A ,

where the summation runs over q = u, d, s, c, b.
The corresponding ∆B = 1 Wilson coefficients at scale µ = O(mb) are simply given by a

truncated version of eq. (VI.7)

C⃗(mb) = U5(mb, MW) C⃗(MW) . (VI.34)

Here U5 is the 6 × 6 RG evolution matrix of eq. (VI.24) for f = 5 active flavours. The initial
conditions C⃗(MW) are identical to those of (VI.9)–(VI.14) for the ∆S = 1 case.

G. Numerical Results for the∆B = 1Wilson Coefficients in Pure QCD

TABLE XIII. ∆B = 1Wilson coefficients at µ = mb(mb) = 4.40GeV formt = 170GeV.

Λ(5)

MS
= 140MeV Λ(5)

MS
= 225MeV Λ(5)

MS
= 310MeV

Scheme LO NDR HV LO NDR HV LO NDR HV
C1 –0.272 –0.164 –0.201 –0.307 –0.184 –0.227 –0.337 –0.202 –0.250
C2 1.120 1.068 1.087 1.139 1.078 1.101 1.155 1.087 1.113
C3 0.012 0.012 0.011 0.013 0.013 0.012 0.015 0.015 0.014
C4 –0.026 –0.031 –0.026 –0.030 –0.035 –0.029 –0.032 –0.038 –0.032
C5 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010
C6 –0.033 –0.035 –0.029 –0.038 –0.041 –0.033 –0.042 –0.046 –0.036

Table XIII lists the ∆B = 1Wilson coefficients for Qu,c
1 , Qu,c

2 , Q3, . . . , Q6 in pure QCD.
C1, C4 and C6 show a O(20%) scheme dependence while this dependence is much weaker for the
rest of the coefficients.
Similarly to the ∆S = 1 case the numerical values for ∆B = 1 Wilson coefficients are sensitive
to the value of ΛMS used to determine αs for the RG evolution. The sensitivity is however less
pronounced than in the ∆S = 1 case due to the higher value µ = mb(mb) of the renormalization
scale.
Finally, one finds no visiblemt dependence in the rangemt = (170 ± 15) GeV.
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VII. THE EFFECTIVE∆F = 1 HAMILTONIAN: INCLUSION OF ELECTROWEAK PENGUIN
OPERATORS

Similarly to the creation of the penguin operators Q3, . . . , Q6 through QCD corrections the
inclusion of electroweak corrections, shown in figs. 2 (d) and (e), generates a set of new operators,
the so-called electroweak penguin operators. For the ∆S = 1 decay K → ππ they are usually
denoted by Q7, . . . , Q10.
This means that although now we will have to deal with technically more involved issues like
an extended operator basis or the possibility of mixed QCD-QED contributions the underlying
principles in performing the RG evolution will closely resemble those used in section VI for pure
QCD. Obviously, the fundamental step has already been made when going from current-current
operators only in section V, to the inclusion of QCD penguins in section VI. Hence, in this section
we will wherever possible only point out the differences between the pure 6 × 6 QCD and the
combined 10 × 10 QCD-QED case.

The full ∆S = 1 effective hamiltonian for K → ππ at scales µ < mc reads including QCD
and QED corrections4

Heff(∆S = 1) =
GF√

2
V ∗

usVud

10∑

i=1

(zi(µ) + τ yi(µ))Qi(µ) , (VII.1)

with τ = −V ∗
tsVtd/(V ∗

usVud).

A. Operators

The basis of four-quark operators for the ∆S = 1 effective hamiltonian in (VII.1) is given by
Q1, . . . , Q6 of (VI.3) and the electroweak penguin operators

Q7 =
3

2
(s̄d)V−A

∑

q

eq (q̄q)V+A ,

Q8 =
3

2
(s̄idj)V−A

∑

q

eq (q̄jqi)V+A ,

Q9 =
3

2
(s̄d)V−A

∑

q

eq (q̄q)V−A , (VII.2)

Q10 =
3

2
(s̄idj)V−A

∑

q

eq (q̄jqi)V−A .

Here, eq denotes the quark electric charge reflecting the electroweak origin of Q7, . . . , Q10. The
basis Q1, . . . , Q10 closes under QCD and QED renormalization. Finally, for mb > µ > mc the
operators Qc

1 and Qc
2 of eq. (VI.4) have to be included again similarly to the case of pure QCD.

4In principle also operators Q11 = gs
16π2 mss̄σµνT aGµν

a (1 − γ5)d and Q12 = eed
16π2 mss̄σµνFµν(1 − γ5)d

should be considered for K → ππ. However, as shown in (Bertolini et al., 1995a) their numerical contri-
bution is negligible. Therefore Q11 and Q12 will not be included here for K → ππ.
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[Gilman, Wise (1979); Buras et al. (1990s)]
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Relations between level spacings in bottom and 
charm systems, e.g.: 
‣  vs.  

‣  

‣  

Form-factor relations: 

with ( ):

m2
B* − m2

B ≈ 0.49 GeV2 m2
D* − m2

D ≈ 0.55 GeV2

mBs
− mB ≈ mDs

− md ≈ 0.10 GeV
m2

B*2
− m2

B1
≈ m2

D*2
− m2

D1
≈ 0.17 GeV2

w = v ⋅ v′ 

HEAVY QUARK SYMMETRY

▸ Hadronic bound states containing a 
heavy quark obey an approximate spin-
flavor symmetry  

▸ Many predictions for spectroscopy of 
heavy hadrons 

▸ Symmetry relations among  form 
factors, including symmetry-breaking 
corrections  or 

B → D(*)

∼ αs(mQ) ΛQCD/mQ and  ξ(1) = 1

326 M. Neubert/Physics Reports245 (1994) 259—395

analysis considerably by including the first-order power corrections in 1 /mc and i/mb, as well as
renormalization effects at next-to-leading order in perturbation theory. The original analysis of power
corrections is due to Luke [30]. Radiative corrections at leading and subleading order have been
included in a systematic way in Refs. [86,90].
We start by introducing a convenient set of six hadronic form factors h (w), which parameterize

the relevant meson matrix elements of the flavor-changing vector and axial vector currents V~L= ëy’~b
and A,U = ~#y5b,

(D(v’)IV~IB(v))= h~(w)(v + V~)~L+ h_(w) (v —

(D*(vF,E)IV~LIB(v))= ihy(w) e~v~,v~,

(D*(vf,E)IA~dIB(v))hAI(w)(w+i) *~~_ [hA2(w)v~~+hA3(w)vh1~}E*.v. (4.25)

Here w = v v’ is the velocity transfer of the mesons. The results (1.29) and (1.45) obtained in
section 1.4 from the consideration of the naive symmetry limit would correspond to

h~(w)=hy(w)—hA,(w) —hA3(w)(w),

h(w)=hA2(w) =0. (4.26)

But even at leading order in the 1/rn0 expansion there are corrections to these relations from
renonnalization group effects. They can be taken into account by combining the operator product
expansion of the flavor-changing currents J1~~= V~Lor A’~in (3.126) with the general form (4.24)
of matrix elements of the dimension-three operators in the effective theory. According to (3.142),
the /5-dependence of the Wilson coefficients of any bilinear heavy-quark current can be factorized
into a universal function Khh (w, ia), which is normalized at zero recoil. The /5-dependence of this
function has to cancel against that of the Isgur—Wise function. We can use this fact to define a
renormalization-group invariant Isgur—Wise form factor by

~ren(~4’) ~~(w,/5)Khh(w,/L), ~ren(1) = 1. (4.27)

Neglecting terms of order 1 /mQ, we then obtain [86]

(M’(v’) Ij~IM(L’))= ~ren(W) ~ ~~(w) Tr{M’(v’)F1M(v)}. (4.28)

For J~= V’~and A’~,the matrices F, are given in (3.102) and (3.112), respectively. It is now
straightforward to evaluate the traces to find

h~(w)= {C,(w) + ~(w+ l)[C2(w) +C3(W)]}~ren(W),

h(w) = ~(w + 1) [C2(w) — C3(W)]~ren(W),

hy(w) = Ci(W)~ren(W),

hA1(w) C~(W)~ren(W),
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Here w = v v’ is the velocity transfer of the mesons. The results (1.29) and (1.45) obtained in
section 1.4 from the consideration of the naive symmetry limit would correspond to

h~(w)=hy(w)—hA,(w) —hA3(w)(w),

h(w)=hA2(w) =0. (4.26)

But even at leading order in the 1/rn0 expansion there are corrections to these relations from
renonnalization group effects. They can be taken into account by combining the operator product
expansion of the flavor-changing currents J1~~= V~Lor A’~in (3.126) with the general form (4.24)
of matrix elements of the dimension-three operators in the effective theory. According to (3.142),
the /5-dependence of the Wilson coefficients of any bilinear heavy-quark current can be factorized
into a universal function Khh (w, ia), which is normalized at zero recoil. The /5-dependence of this
function has to cancel against that of the Isgur—Wise function. We can use this fact to define a
renormalization-group invariant Isgur—Wise form factor by

~ren(~4’) ~~(w,/5)Khh(w,/L), ~ren(1) = 1. (4.27)

Neglecting terms of order 1 /mQ, we then obtain [86]

(M’(v’) Ij~IM(L’))= ~ren(W) ~ ~~(w) Tr{M’(v’)F1M(v)}. (4.28)

For J~= V’~and A’~,the matrices F, are given in (3.102) and (3.112), respectively. It is now
straightforward to evaluate the traces to find

h~(w)= {C,(w) + ~(w+ l)[C2(w) +C3(W)]}~ren(W),

h(w) = ~(w + 1) [C2(w) — C3(W)]~ren(W),

hy(w) = Ci(W)~ren(W),

hA1(w) C~(W)~ren(W),

[Shuryak (1980)]

[Isgur, Wise (1990)]

5
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▸ Extrapolate observed spectrum in 
 to zero recoil: w = v ⋅ v′ 

[MN (1991)]

6

MODEL-INDEPENDENT DETERMINATION OF |VCB|

▸ Direct calculation of the  
form factors (HPQCD):

B → Dlν9
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FIG. 10. Test results for f+(0) and f+(q
2
max) under modifica-

tions of the “standard extrapolation” fit ansatz. The shaded
horizontal bands are the standard extrapolation results. The
x-axis labels the modifications 1 - 16 listed in the text.

14. use 4% uncertainty for higher order matching con-
tributions;

15. use 2% uncertainty on fine and 4% uncertainty on
coarse lattices for higher order matching contribu-
tions;

16. remove Blaschke factor from f0 and f+.

In Fig. 10 we show how results for f+(q2 = 0) = f0(0)
and f+(q2max

) are a↵ected by these modifications. One
sees that our extrapolations are very stable.

V. FORM FACTOR RESULTS

Our final results for the form factors in the physical
limit versus q2 are shown in Fig. 11. Error plots for
f+(q2) and f0(q2) are given in Fig. 12. We isolate the
errors coming from di↵erent sources and also give the
total error as a function of q2. The individual errors in
Fig. 12 correspond to the following:

• statistical
The statistical error includes the three and two-
point correlator fit errors and the scale errors (r1
and r1/a). These are lattice simulation errors, and
we have lattice data in the large q2 region, from
about 9.5 GeV2 to 12 GeV2. Fig. 12 shows the
propagation of such errors to the continuum limit
and after extrapolation to the full q2 range.

• chiral extrapolation
These are the valence and sea quark mass extrap-
olation errors including e↵ects of chiral logs. They

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

q2 [GeV2]
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FIG. 11. Continuum and chiral extrapolated f0 (lower band)
and f+ (upper band).

come from the fit parameters ck1 , ck2 and ck3 in
Eq. (33).

• discretization
Discretization errors come from the (amc)n and
(aED)n terms and they constitute the dominant
errors in our calculation.

• kinematic
These come from the z-expansion coe�cients ã(0,+)

k

and the pole locations. As one would expect, the
error increases as q2 decreases.

• matching
Matching errors come from the m?,k fit parameters
as explained in the previous section.

Physical meson mass input errors (0.01%) and finite size
errors (0.1%) are not included in the plots, since they are
too small to have any e↵ect.

The slope of f+(q2) as one comes down from the zero
recoil point at q2 = q2

max
is a quantity that is often

quoted when comparing di↵erent measurements of this
form factor. In terms of the variable w = (M2

B
+M2

D
�

q2)/(2MBMD) the slope parameter ⇢2 is given by

G(w) = G(1)
�
1� ⇢2(w � 1) +O((w � 1)2)

 
, (37)

where,

G(w = w(q2)) =
2
p


1 + 
f+(q

2) (38)

for

 =
MD

MB

. (39)

[HPQCD (2015)]
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HEAVY QUARK EFFECTIVE THEORY (HQET)

▸ Firm theoretical basis for deriving heavy-
quark symmetry and its consequences

[Eichten, Hill (1990); Georgi (1990)]
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HEAVY QUARK EFFECTIVE THEORY (HQET)

▸ Firm theoretical basis for deriving heavy-
quark symmetry and its consequences 

▸ An anecdote from 1988 …

[Eichten, Hill (1990); Georgi (1990)]
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HEAVY QUARK EFFECTIVE THEORY (HQET)

▸ Firm theoretical basis for deriving heavy-
quark symmetry and its consequences

[Eichten, Hill (1990); Georgi (1990)]
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[Caswell, Lepage (1986);  Bodwin, Braaten, Lepage (1992, 1995)]
NONRELATIVISTIC EFFECTIVE FIELD THEORY (NRQED & NRQCD)

``We develop a renormalization group strategy for the study of bound states in 
field theory. Our analysis is completely different from conventional analyses, 
based upon the Bethe-Salpeter equation, and it is far simpler.” 
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HEAVY QUARK EFFECTIVE THEORY (HQET)

▸ Firm theoretical basis for deriving heavy-
quark symmetry and its consequences

[Eichten, Hill (1990); Georgi (1990)]
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[Caswell, Lepage (1986);  Bodwin, Braaten, Lepage (1992, 1995)]
NONRELATIVISTIC EFFECTIVE FIELD THEORY (NRQED & NRQCD)

new interactions are identical in form to interactions already present in the theory, and so

the net effect is simply to shift bare masses and charges. Beyond leading order in 1/M , one

must extend the lagrangian to include nonrenormalizable interactions that correct the low-

energy dynamics order-by-order in 1/M . In this cutoff formulation of QCD, all effects that

arise from relativistic states, and only these effects, are incorporated into renormalizations

of the coupling constants of the extended lagrangian. Thus, in the cutoff theory, relativistic

and nonrelativistic contributions are automatically separated. This separation is the basis

for our analysis of the annihilation decays of heavy quarkonia.

The utility of the cutoff theory is greatly enhanced if, as a second step, a Foldy-

Wouthuysen-Tani transformation [12] is used to block-diagonalize the Dirac theory so as

to decouple the heavy quark and antiquark degrees of freedom. Such a decoupling of parti-

cle and antiparticle is a familiar characteristic of nonrelativistic dynamics and is quite useful

in our study of heavy quarkonium. The net effect is that the usual relativistic field theory of

four-component Dirac spinor fields is replaced by a nonrelativistic Schrödinger field theory,

with separate two-component Pauli spinor fields for the heavy quarks and for the heavy

antiquarks. This field theory is NRQCD [9]. The lagrangian for NRQCD is

LNRQCD = Llight + Lheavy + δL. (2.2)

The gluons and the nf flavors of light quarks are described by the fully relativistic lagrangian

Llight = −
1

2
trGµνG

µν +
∑

q̄ i̸Dq, (2.3)

where Gµν is the gluon field-strength tensor expressed in the form of an SU(3) matrix, and q

is the Dirac spinor field for a light quark. The gauge-covariant derivative is Dµ = ∂µ + igAµ,

where Aµ = (φ,A) is the SU(3) matrix-valued gauge field and g is the QCD coupling

constant. The sum in (2.3) is over the nf flavors of light quarks. The heavy quarks and

antiquarks are described by the term

Lheavy = ψ†

(

iDt +
D2

2M

)

ψ + χ†

(

iDt −
D2

2M

)

χ, (2.4)

9

where ψ is the Pauli spinor field that annihilates a heavy quark, χ is the Pauli spinor field

that creates a heavy antiquark, and Dt and D are the time and space components of the

gauge-covariant derivative Dµ. Color and spin indices on the fields ψ and χ have been

suppressed. The lagrangian Llight +Lheavy describes ordinary QCD coupled to a Schrödinger

field theory for the heavy quarks and antiquarks. The relativistic effects of full QCD are

reproduced through the correction term δL in the lagrangian (2.2).

The correction terms in the effective lagrangian for NRQCD that are most important for

heavy quarkonium are bilinear in the quark field or the antiquark field:

δLbilinear =
c1

8M3

(
ψ†(D2)2ψ − χ†(D2)2χ

)

+
c2

8M2

(
ψ†(D · gE− gE · D)ψ + χ†(D · gE− gE · D)χ

)

+
c3

8M2

(
ψ†(iD × gE− gE× iD) · σψ + χ†(iD × gE− gE× iD) · σχ

)

+
c4

2M

(
ψ†(gB · σ)ψ − χ†(gB · σ)χ

)
, (2.5)

where Ei = G0i and Bi = 1
2ϵ

ijkGjk are the electric and magnetic components of the gluon

field strength tensor Gµν . By charge conjugation symmetry, for every term in (2.5) involving

ψ, there is a corresponding term involving the antiquark field χ, with the same coefficient ci,

up to a sign. The operators in (2.5) must be regularized, and they therefore depend on the

ultraviolet cutoff or renormalization scale Λ of NRQCD. The coefficients ci(Λ) also depend

on Λ in such a way as to cancel the Λ-dependence of the operators. Renormalization theory

tells us that NRQCD can be made to reproduce QCD results as accurately as desired by

adding correction terms to the lagrangian like those in (2.5) and tuning the couplings to

appropriate values [13].

Mixed 2-fermion operators involving χ† and ψ (or ψ† and χ) correspond to the annihila-

tion (or the creation) of a QQ pair. Such terms are excluded from the lagrangian as part of

the definition of NRQCD. If such an operator annihilates a QQ pair, it would, by energy con-

servation, have to create gluons (or light quarks) with energies of order M . The amplitude

for annihilation of a QQ pair into such high energy gluons cannot be described accurately

in a nonrelativistic theory such as NRQCD. Nevertheless, as is discussed in Section II E, the

10

▸ Same for  systems 

▸ Same operators but different 
power counting (different 
scaling of energy and 
momenta)

(QQ̄)
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THE GRAND CHALLENGE:  NON-LEPTONIC DECAYS

▸ Georgi: “Why we can’t calculate …” 

▸ Naive factorization approach was semi-successful in describing early data, 
but lacked a firm theoretical foundation

[Georgi: Weak Interactions and Modern Particle Theory (1984)]

[Bauer, Stech, Wirbel (1986)]

9
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THE GRAND CHALLENGE:  NON-LEPTONIC DECAYS

▸ Georgi: “Why we can’t calculate …” 

▸ Naive factorization approach was semi-successful in describing early data, 
but lacked a firm theoretical foundation

[Georgi: Weak Interactions and Modern Particle Theory (1984)]

▸ QCD factorization approach (BBNS): 

▸ First model-independent calculation of 
 decay amplitudes from first 

principles (including strong- and weak-
interaction phases) in heavy-quark limit

B → M1M2

[Beneke, Buchalla, MN, Sachrajda (1999—2001)] Factorization proof at two-loop order based on 
method of regions, see pp. 48-79 in BBNS (2000)

9
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QCD FACTORIZATION IN NONLEPTONIC B DECAYS INTO LIGHT MESONS
QCD factorization theorem: 

Figure 1: Graphical representation of the factorization formula. Only one of
the two form-factor terms in (25) is shown for simplicity.

example. To leading power in ΛQCD/mb, but to all orders in perturbation theory, the
matrix elements of the local operators Qi in the effective weak Hamiltonian in (1) obey
the factorization formula

⟨πK|Qi|B⟩ = FB→π
0 T I

K,i ∗ fKΦK + FB→K
0 T I

π,i ∗ fπΦπ

+ T II
i ∗ fBΦB ∗ fKΦK ∗ fπΦπ , (25)

where ΦM are leading-twist light-cone distribution amplitudes, and the ∗-products imply
an integration over the light-cone momentum fractions of the constituent quarks inside
the mesons. A graphical representation of this result is shown in Figure 1. Because
the energetic, collinear light-quark pair that ultimately evolves into the emission particle
at the “upper vertex” is created by a point-like source, soft gluon exchange between
this pair and the other quarks in the decay is power suppressed in the heavy-quark
limit (colour transparency). In other words, whereas the hadronic physics governing
the semileptonic B → M1 transition and the formation of the emission particle M2 is
genuinely nonperturbative, “nonfactorizable” interactions connecting the two systems
are dominated by hard gluon exchange.

The hard-scattering kernels T I,II
i in (25) are calculable in perturbation theory. T I

M,i

starts at tree level and, at higher order in αs, contains “nonfactorizable” corrections from
hard gluon exchange or light-quark loops (penguin topologies). Hard, “nonfactorizable”
interactions involving the spectator quark are part of T II

i . The relevant Feynman dia-
grams contributing to these kernels at next-to-leading are shown in Figure 2. Although
individually these graphs contain infrared-sensitive regions at leading power, all soft and
collinear divergences cancel in their sum, thus yielding a calculable short-distance con-
tribution. Annihilation topologies are not included in (25) and Figure 2, because they
do not contribute at leading order in ΛQCD/mb. These power-suppressed contributions
will be discussed separately in Section 3.5.

We stress that the factorization formula does not imply that hadronic B decays are
perturbative in nature. Dominant soft contributions to the decay amplitudes exist, which
cannot be controlled in a hard-scattering approach. However, at leading power all these
nonperturbative effects are contained in the semileptonic form factors and light-cone

10
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Figure 1: Graphical representation of the factorization formula. Only one of
the two form-factor terms in (25) is shown for simplicity.

example. To leading power in ΛQCD/mb, but to all orders in perturbation theory, the
matrix elements of the local operators Qi in the effective weak Hamiltonian in (1) obey
the factorization formula

⟨πK|Qi|B⟩ = FB→π
0 T I

K,i ∗ fKΦK + FB→K
0 T I

π,i ∗ fπΦπ

+ T II
i ∗ fBΦB ∗ fKΦK ∗ fπΦπ , (25)

where ΦM are leading-twist light-cone distribution amplitudes, and the ∗-products imply
an integration over the light-cone momentum fractions of the constituent quarks inside
the mesons. A graphical representation of this result is shown in Figure 1. Because
the energetic, collinear light-quark pair that ultimately evolves into the emission particle
at the “upper vertex” is created by a point-like source, soft gluon exchange between
this pair and the other quarks in the decay is power suppressed in the heavy-quark
limit (colour transparency). In other words, whereas the hadronic physics governing
the semileptonic B → M1 transition and the formation of the emission particle M2 is
genuinely nonperturbative, “nonfactorizable” interactions connecting the two systems
are dominated by hard gluon exchange.

The hard-scattering kernels T I,II
i in (25) are calculable in perturbation theory. T I

M,i

starts at tree level and, at higher order in αs, contains “nonfactorizable” corrections from
hard gluon exchange or light-quark loops (penguin topologies). Hard, “nonfactorizable”
interactions involving the spectator quark are part of T II

i . The relevant Feynman dia-
grams contributing to these kernels at next-to-leading are shown in Figure 2. Although
individually these graphs contain infrared-sensitive regions at leading power, all soft and
collinear divergences cancel in their sum, thus yielding a calculable short-distance con-
tribution. Annihilation topologies are not included in (25) and Figure 2, because they
do not contribute at leading order in ΛQCD/mb. These power-suppressed contributions
will be discussed separately in Section 3.5.

We stress that the factorization formula does not imply that hadronic B decays are
perturbative in nature. Dominant soft contributions to the decay amplitudes exist, which
cannot be controlled in a hard-scattering approach. However, at leading power all these
nonperturbative effects are contained in the semileptonic form factors and light-cone
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QCD factorization theorem: 

Figure 1: Graphical representation of the factorization formula. Only one of
the two form-factor terms in (25) is shown for simplicity.
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an integration over the light-cone momentum fractions of the constituent quarks inside
the mesons. A graphical representation of this result is shown in Figure 1. Because
the energetic, collinear light-quark pair that ultimately evolves into the emission particle
at the “upper vertex” is created by a point-like source, soft gluon exchange between
this pair and the other quarks in the decay is power suppressed in the heavy-quark
limit (colour transparency). In other words, whereas the hadronic physics governing
the semileptonic B → M1 transition and the formation of the emission particle M2 is
genuinely nonperturbative, “nonfactorizable” interactions connecting the two systems
are dominated by hard gluon exchange.

The hard-scattering kernels T I,II
i in (25) are calculable in perturbation theory. T I

M,i

starts at tree level and, at higher order in αs, contains “nonfactorizable” corrections from
hard gluon exchange or light-quark loops (penguin topologies). Hard, “nonfactorizable”
interactions involving the spectator quark are part of T II

i . The relevant Feynman dia-
grams contributing to these kernels at next-to-leading are shown in Figure 2. Although
individually these graphs contain infrared-sensitive regions at leading power, all soft and
collinear divergences cancel in their sum, thus yielding a calculable short-distance con-
tribution. Annihilation topologies are not included in (25) and Figure 2, because they
do not contribute at leading order in ΛQCD/mb. These power-suppressed contributions
will be discussed separately in Section 3.5.

We stress that the factorization formula does not imply that hadronic B decays are
perturbative in nature. Dominant soft contributions to the decay amplitudes exist, which
cannot be controlled in a hard-scattering approach. However, at leading power all these
nonperturbative effects are contained in the semileptonic form factors and light-cone
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▸ Importance of non-local matrix elements, 
in particular light-cone distribution 
amplitudes (LCDAs), to account for 
hadronic dynamics 

▸ Second term corresponds to Brodsky-
Lepage (1980), while the first term is 
specific for B-meson decays and 
contributes at the same order in  ΛQCD/mb

The Power of Effective Field Theories
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QCD FACTORIZATION IN NONLEPTONIC B DECAYS INTO LIGHT MESONS

Status 2004

[Beneke, MN (2003)]
11
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CONFIRMATION OF KM RELATION BETWEEN IM(VUB) AND IM(VTB)

12

▸ In 2001, fact that  had been 
established by studies of  and  
mixing and first measurements of  

▸ Fact that  has been established by 
studying rare hadronic decays ( ) 
in QCD factorization 

▸ KM relation confirmed; most stringent test of 
KM mechanism at the time

Im(Vtd) ≠ 0
K−K̄ B−B̄

sin 2β

Im(Vub) ≠ 0
B → πK, ππ

[BBNS (2001), here updated to 2004 data]

CP violation in the bottom sector

Fact that Im(V ∗
ub) ̸= 0 has been established by studies of rare

hadronic B decays using QCD factorization: [BBNS 01]
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η

ρ

top sector

bottom sector

combined region

CKM relation between Im(Vtd) and Im(Vub) confirmed
most stringent test of CKM mechanism to date!

In framework of the Standard Model, this determines the
triangle parameters with good precision (90% CL):

γ = (62 ± 15)◦, and ρ̄ = 0.15 ± 0.08, η̄ = 0.36 ± 0.09

Mixing-Independent Determination ofThe Unitarity Triangle – p.4/21

2004 analysis: ,   
ccccccccccccrk ,     

ρ̄ = 0.15 ± 0.08 η̄ = 0.36 ± 0.09
γ = (67 ± 15)∘ β = (24 ± 2)∘

2021 values:    ,    
cccccccclccrk.  ,     

ρ̄ = 0.157+0.009
−0.005 η̄ = 0.347+0.012

−0.005
γ = (65.5+1.3

−1.2)
∘ β = (22.42+0.64

−0.37)
∘

[CKMfitter global fit, spring 2021]

The Power of Effective Field Theories
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▸ Measuring time-dependent CP asymmetries 
in  and  decays one obtains 
an internally consistent determination of  

▸ 2003 analysis found:   

▸ 2021 value:                  

B → ππ B → πρ
γ

γ = (62 ± 8)∘

γ = (65.5+1.3
−1.2)

∘

[Beneke, MN (2003)]

Status 2003

The Power of Effective Field Theories

CONFIRMATION OF KM RELATION BETWEEN IM(VUB) AND IM(VTB)
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LIMITATIONS OF QCD FACTORIZATION

14

▸ Lots of predictive power, but uncertainties due to hadronic input quantities: 
form factors, decay constants, and LCDAs (reducible to some extent) 

▸ Power corrections in  do not (naively) factorize due to endpoint 
divergences (  different meanings of “factorization”) 

▸ In some cases, power-suppressed effects can be enhanced by large Wilson 
coefficients (e.g. “color-suppressed” decay modes) 

▸ To make progress, one needed an EFT implementation of QCD factorization

ΛQCD/mb
⇒

The Power of Effective Field Theories
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SOFT-COLLINEAR EFFECTIVE THEORY (SCET)

▸ Firm theoretical basis for deriving QCD factorization theorems in heavy-quark 
and collider physics for processes involving light energetic particles 

▸ Collinear effective Lagrangian: 

▸ Soft-collinear factorization at Lagrangian level 

▸ Scale separation and resummation accomplished using powerful EFT tools

[Bauer, (Fleming,) Pirjol, Stewart (2001); Beneke, Chapovski, Diehl, Feldmann (2002)]

eikonal interaction, can be removed by 
the field redefinition ξn → Sn ξ(0)

n

15

7 16. Heavy-Quark and Soft-Collinear E�ective Theory

In the above power counting the transverse momenta of soft degrees of freedom scale as p‹
s ≥256

Q⁄2, which is much smaller than the transverse momenta p‹
c ≥ Q⁄ of collinear fields. This theory is257

usually called SCETI. If the external kinematics require that the transverse momenta of both soft258

and collinear fields are of the same size, p‹
c ≥ p‹

s , then the appropriate degrees of freedom have the259

scaling pc ≥ Q(1, ⁄2, ⁄) and ps ≥ Q(⁄, ⁄, ⁄). This theory is usually called SCETII and is required,260

e.g., for exclusive hadronic decays such as B̄ æ Dfi, where the virtuality of both collinear and soft261

degrees of freedom are set by �QCD, or for the description of transverse-momentum distributions262

at colliders. SCETI power counting is assumed in the following sections, while SCETII is discussed263

in more detail in 16.3.6.264

16.3.2 Leading-order Lagrangian265 sect.Lagrangian

The derivation of the SCET Lagrangian follows similar steps as described for HQET in Sec-266

tion 16.2.1. One begins by deriving the Lagrangian for a theory containing only a single collinear sec-267

tor. Similar to HQET, one separates the full QCD field into two components, qn(x) = Ân(x)+�n(x),268

where (with n · n̄ = 2)269

Ân(x) = /n/̄n
4 qn(x) , �n(x) = /̄n/n

4 qn(x) . (16.11)dummy1dummy1

The degrees of freedom described by the field �n are far o� shell and can therefore be eliminated270

using its equation of motion. This gives271

Ln = Â̄n(x)
5
in · D + i /D‹ 1

in̄ · D
i /D‹

6 /̄n
2 Ân(x) . (16.12)Lfinal1Lfinal1

As a next step, one separates the large and residual momentum components by decomposing the272

collinear momentum into a “label” and a residual momentum, pµ = P µ + kµ with n · P = 0.273

One then performs a phase redefinition on the collinear fields, such that Ân(x) = eiP ·x ›n(x).274

Derivatives acting on the fields ›n(x) now only pick out the residual momentum. Since unlike in275

HQET the label momentum in SCET is not conserved, one defines a label operator Pµ acting as276

Pµ›n(x) = P µ›n(x) [52], as well as a corresponding covariant label operator iDµ
n = Pµ + gAµ

n(x).277

Note that at leading order in power counting iDµ
n does not contain the soft gluon field. This leads278

to the final SCET Lagrangian [52,53,55,56]279

Ln = ›̄n(x)
5
in · Dn + gn · As + i/D‹

n
1

in̄ · Dn
i/D‹

n

6 /̄n
2 ›n(x) + . . . , (16.13)Lfinal3Lfinal3

where we have split in ·D into a collinear piece in ·Dn = in ·ˆ +gn ·An and a soft piece gn ·As. This280

latter term gives rise to the only interaction between a collinear quark and soft gluons at leading281

power in ⁄. The ellipses represent higher-order interactions between soft and collinear particles.282

The Lagrangian describing collinear fields in di�erent light-like directions is simply given by283

the sum of the Lagrangians for each direction n, i.e. L =
q

n Ln. The soft gluons are the same in284

each individual Lagrangian. An alternative way to understand the separation between large and285

small momentum components is to derive the Lagrangian of SCET in position space [56]. In this286

case no label operators are required, and the dependence on short-distance e�ects is contained in287

non-localities at short distances. An important di�erence between SCET and HQET is that the288

SCET Lagrangian is not corrected by short distance fluctuations. The physical reason is that in289

the construction described above no high-momentum modes have been integrated out [56]. Such290

hard modes arise when di�erent collinear sectors are coupled via some external current (e.g. in jet291

production at e+e≠ or hadron colliders), or when collinear particles are produced in the rest frame292

of a decaying heavy object (such as in B decays). Short-distance e�ects are then incorporated in293

the Wilson coe�cients of the external source operators.294
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SCET PROOF OF QCD FACTORIZATION FOR  DECAYB → K*γ

Two-step matching procedure QCD  SCET-1  SCET-2:→ →
[Becher, Hill, MN (2005)]

16

QCD
µ2 ∼ m2

b−→ SCETI
µ2 ∼ mbΛ−→ SCETII

PSfrag replacements

Q8

−→PSfrag replacements JA −→PSfrag replacements JA

PSfrag replacements

Q8

−→PSfrag replacements

JB

−→PSfrag replacements

OB

PSfrag replacements

Q8

−→
PSfrag replacements

JC
−→

PSfrag replacements
OC

Figure 1: Three QCD Feynman diagrams for the contributions of Q8 and their leading-order
representation in the effective theory. The double line denotes the heavy-quark field. The
dashed lines denote hard-collinear fields in SCETI and collinear fields in SCETII. Solid lines
in the effective-theory diagrams denote soft fields and the dotted line denotes a soft-collinear
field.

While it is easy to see that all of the above regions are required to obtain the expansion of
the correlator diagrams, we do not have a proof that they are sufficient.2 Two-loop applications
in similar kinematic situations [28] suggest that no additional regions are needed. The above
list of momentum scalings is natural in that it contains all onshell modes whose components
n·p and n̄·p scale with powers of λ equal to the scaling of the components of external momenta.

Finally, let us note that the analysis of regions presented above assumes exactly massless
light quarks. A systematic inclusion of quark mass terms presents a challenge, since the mode
structure in the low-energy theory is then drastically altered. For instance, including O(Λ)
masses would eliminate the soft-collinear mode, but the resulting diagrams for the soft and
collinear regions would no longer be separately well-defined in dimensional regularization,
requiring additional unconventional (e.g., analytic) regulators. We will return to this issue in
Section 4.3 and address the more modest question of the leading corrections for light-quark
masses mq ≪ Λ. We argue that contributions linear in the light mass may be absorbed into
the hadronic parameters appearing in the factorization formula, while any terms that could
potentially spoil factorization appear first at quadratic order.

2The same is true for traditional diagrammatic factorization proofs. Additional momentum regions could
invalidate the analysis also in these cases.
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Product/convolution of component functions each depending on a single scale:

17

PROTOTYPICAL SCET FACTORIZATION THEOREM

hard collinear soft
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� ⇠ H

Z
J ⌦ J ⌦ S

hard

collinear

ultrasoft

<latexit sha1_base64="/BCi3UC5qwaP3Yn5P1RdLDWhkSA=">AAAB63icdVBNSwMxEJ2tX7V+VT16CRbB07JbCnrwUPDisUVrhXYt2TTbhmazSzIrlNKf4MWDgnj1D3nz35htK/j5IOTx3gwz88JUCoOe9+4UlpZXVteK66WNza3tnfLu3rVJMs14iyUy0TchNVwKxVsoUPKbVHMah5K3w9F57rfvuDYiUVc4TnkQ04ESkWAUrXTZvK32yhXPrXo5yG/iu7Pfq8ACjV75rdtPWBZzhUxSYzq+l2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzFadkiOr9EmUaPsUkpn6tWNCY2PGcWgrY4pD89PLxb+8TobRaTARKs2QKzYfFGWSYELyu0lfaM5Qji2hTAu7K2FDqilDm07JhvB5KfmftKuuX3N9v1mr1M8WeRThAA7hGHw4gTpcQANawGAA9/AIT450Hpxn52VeWnAWPfvwDc7rB223jbI=</latexit>

Q2

<latexit sha1_base64="oSSov1+YeR5wOQ3xJsIct7efluI=">AAAB63icdVDLSgNBEOyNrxhfUY9eBoPgadkNAT14CHjxGNGYQLKG2clsMmR2dpnpFcKST/DiQUG8+kPe/BsnD8FnwTBFVTfdXWEqhUHPe3cKS8srq2vF9dLG5tb2Tnl378YkmWa8yRKZ6HZIDZdC8SYKlLydak7jUPJWODqf+q07ro1I1DWOUx7EdKBEJBhFK12lt9VeueK5VW8K8pv47uz3KrBAo1d+6/YTlsVcIZPUmI7vpRjkVKNgkk9K3czwlLIRHfCOpYrG3AT5bNUJObJKn0SJtk8hmalfO3IaGzOOQ1sZUxyan95U/MvrZBidBrlQaYZcsfmgKJMEEzK9m/SF5gzl2BLKtLC7EjakmjK06ZRsCJ+Xkv9Jq+r6Ndf3L2uV+tkijyIcwCEcgw8nUIcLaEATGAzgHh7hyZHOg/PsvMxLC86iZx++wXn9AJ0QjdE=</latexit>

p2

<latexit sha1_base64="i+cXD66CEVT2+i85aYp7fMQJTKU=">AAAB73icdVDLSgMxFL1TX7W+qi7dBIvgapwpBV24KLhx2YJ1Cu20ZNJMG5rJhCQjlKEf4caFgrj1d9z5N6YPweeBkMM593LvPZHkTBvPe3cKK6tr6xvFzdLW9s7uXnn/4FanmSK0RVKeqnaENeVM0JZhhtO2VBQnEadBNL6a+cEdVZql4sZMJA0TPBQsZgQbKwWyVztr9qr9csVzq94M6Dfx3fnvVWCJRr/81h2kJEuoMIRjrTu+J02YY2UY4XRa6maaSkzGeEg7lgqcUB3m83Wn6MQqAxSnyj5h0Fz92pHjROtJEtnKBJuR/unNxL+8TmbiizBnQmaGCrIYFGccmRTNbkcDpigxfGIJJorZXREZYYWJsQmVbAifl6L/SVB1/Zrr+81apX65zKMIR3AMp+DDOdThGhrQAgJjuIdHeHKk8+A8Oy+L0oKz7DmEb3BePwDWzY8L</latexit>

p4/Q2

SCET-1

hard

collinear
& soft

<latexit sha1_base64="/BCi3UC5qwaP3Yn5P1RdLDWhkSA=">AAAB63icdVBNSwMxEJ2tX7V+VT16CRbB07JbCnrwUPDisUVrhXYt2TTbhmazSzIrlNKf4MWDgnj1D3nz35htK/j5IOTx3gwz88JUCoOe9+4UlpZXVteK66WNza3tnfLu3rVJMs14iyUy0TchNVwKxVsoUPKbVHMah5K3w9F57rfvuDYiUVc4TnkQ04ESkWAUrXTZvK32yhXPrXo5yG/iu7Pfq8ACjV75rdtPWBZzhUxSYzq+l2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzFadkiOr9EmUaPsUkpn6tWNCY2PGcWgrY4pD89PLxb+8TobRaTARKs2QKzYfFGWSYELyu0lfaM5Qji2hTAu7K2FDqilDm07JhvB5KfmftKuuX3N9v1mr1M8WeRThAA7hGHw4gTpcQANawGAA9/AIT450Hpxn52VeWnAWPfvwDc7rB223jbI=</latexit>

Q2

<latexit sha1_base64="oSSov1+YeR5wOQ3xJsIct7efluI=">AAAB63icdVDLSgNBEOyNrxhfUY9eBoPgadkNAT14CHjxGNGYQLKG2clsMmR2dpnpFcKST/DiQUG8+kPe/BsnD8FnwTBFVTfdXWEqhUHPe3cKS8srq2vF9dLG5tb2Tnl378YkmWa8yRKZ6HZIDZdC8SYKlLydak7jUPJWODqf+q07ro1I1DWOUx7EdKBEJBhFK12lt9VeueK5VW8K8pv47uz3KrBAo1d+6/YTlsVcIZPUmI7vpRjkVKNgkk9K3czwlLIRHfCOpYrG3AT5bNUJObJKn0SJtk8hmalfO3IaGzOOQ1sZUxyan95U/MvrZBidBrlQaYZcsfmgKJMEEzK9m/SF5gzl2BLKtLC7EjakmjK06ZRsCJ+Xkv9Jq+r6Ndf3L2uV+tkijyIcwCEcgw8nUIcLaEATGAzgHh7hyZHOg/PsvMxLC86iZx++wXn9AJ0QjdE=</latexit>

p2

SCET-2

The Power of Effective Field Theories
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Product/convolution of component functions each depending on a single scale:

17

PROTOTYPICAL SCET FACTORIZATION THEOREM

hard collinear soft

<latexit sha1_base64="CAR8kgISJNsS/GGqeCwQijP7xmc=">AAACEHicdVDLSgMxFM3UV62vUZdugkVxNcyUgi4LboqritYWOqVk0kwbmseQZIQy9A/c+CtuXCiIW5fu/BszbcX3geQezr2Xe++JEka18f03p7CwuLS8Ulwtra1vbG652ztXWqYKkyaWTKp2hDRhVJCmoYaRdqII4hEjrWh0mudb10RpKsWlGSeky9FA0JhiZKzUcw9DTQcc2Z/DOgypMPAslIZyoj/JBey5Zd+r+DngbxJ40+iXwRyNnvsa9iVOOREGM6R1J/AT082QMhQzMimFqSYJwiM0IB1LBbJzutn0ngk8sEofxlLZZxeaql87MsS1HvPIVnJkhvpnLhf/ynVSE590MyqS1BCBZ4PilEEjYW4O7FNFsGFjSxBW1O4K8RAphI21sGRN+LgU/k9aFS+oekFwXi3XanM/imAP7IMjEIBjUAN10ABNgMENuAMP4NG5de6dJ+d5Vlpw5j274Bucl3csGpvm</latexit>

� ⇠ H

Z
J ⌦ J ⌦ S

hard

collinear

ultrasoft

<latexit sha1_base64="/BCi3UC5qwaP3Yn5P1RdLDWhkSA=">AAAB63icdVBNSwMxEJ2tX7V+VT16CRbB07JbCnrwUPDisUVrhXYt2TTbhmazSzIrlNKf4MWDgnj1D3nz35htK/j5IOTx3gwz88JUCoOe9+4UlpZXVteK66WNza3tnfLu3rVJMs14iyUy0TchNVwKxVsoUPKbVHMah5K3w9F57rfvuDYiUVc4TnkQ04ESkWAUrXTZvK32yhXPrXo5yG/iu7Pfq8ACjV75rdtPWBZzhUxSYzq+l2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzFadkiOr9EmUaPsUkpn6tWNCY2PGcWgrY4pD89PLxb+8TobRaTARKs2QKzYfFGWSYELyu0lfaM5Qji2hTAu7K2FDqilDm07JhvB5KfmftKuuX3N9v1mr1M8WeRThAA7hGHw4gTpcQANawGAA9/AIT450Hpxn52VeWnAWPfvwDc7rB223jbI=</latexit>

Q2

<latexit sha1_base64="oSSov1+YeR5wOQ3xJsIct7efluI=">AAAB63icdVDLSgNBEOyNrxhfUY9eBoPgadkNAT14CHjxGNGYQLKG2clsMmR2dpnpFcKST/DiQUG8+kPe/BsnD8FnwTBFVTfdXWEqhUHPe3cKS8srq2vF9dLG5tb2Tnl378YkmWa8yRKZ6HZIDZdC8SYKlLydak7jUPJWODqf+q07ro1I1DWOUx7EdKBEJBhFK12lt9VeueK5VW8K8pv47uz3KrBAo1d+6/YTlsVcIZPUmI7vpRjkVKNgkk9K3czwlLIRHfCOpYrG3AT5bNUJObJKn0SJtk8hmalfO3IaGzOOQ1sZUxyan95U/MvrZBidBrlQaYZcsfmgKJMEEzK9m/SF5gzl2BLKtLC7EjakmjK06ZRsCJ+Xkv9Jq+r6Ndf3L2uV+tkijyIcwCEcgw8nUIcLaEATGAzgHh7hyZHOg/PsvMxLC86iZx++wXn9AJ0QjdE=</latexit>

p2

<latexit sha1_base64="i+cXD66CEVT2+i85aYp7fMQJTKU=">AAAB73icdVDLSgMxFL1TX7W+qi7dBIvgapwpBV24KLhx2YJ1Cu20ZNJMG5rJhCQjlKEf4caFgrj1d9z5N6YPweeBkMM593LvPZHkTBvPe3cKK6tr6xvFzdLW9s7uXnn/4FanmSK0RVKeqnaENeVM0JZhhtO2VBQnEadBNL6a+cEdVZql4sZMJA0TPBQsZgQbKwWyVztr9qr9csVzq94M6Dfx3fnvVWCJRr/81h2kJEuoMIRjrTu+J02YY2UY4XRa6maaSkzGeEg7lgqcUB3m83Wn6MQqAxSnyj5h0Fz92pHjROtJEtnKBJuR/unNxL+8TmbiizBnQmaGCrIYFGccmRTNbkcDpigxfGIJJorZXREZYYWJsQmVbAifl6L/SVB1/Zrr+81apX65zKMIR3AMp+DDOdThGhrQAgJjuIdHeHKk8+A8Oy+L0oKz7DmEb3BePwDWzY8L</latexit>

p4/Q2

SCET-1

hard

collinear
& soft

<latexit sha1_base64="/BCi3UC5qwaP3Yn5P1RdLDWhkSA=">AAAB63icdVBNSwMxEJ2tX7V+VT16CRbB07JbCnrwUPDisUVrhXYt2TTbhmazSzIrlNKf4MWDgnj1D3nz35htK/j5IOTx3gwz88JUCoOe9+4UlpZXVteK66WNza3tnfLu3rVJMs14iyUy0TchNVwKxVsoUPKbVHMah5K3w9F57rfvuDYiUVc4TnkQ04ESkWAUrXTZvK32yhXPrXo5yG/iu7Pfq8ACjV75rdtPWBZzhUxSYzq+l2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzFadkiOr9EmUaPsUkpn6tWNCY2PGcWgrY4pD89PLxb+8TobRaTARKs2QKzYfFGWSYELyu0lfaM5Qji2hTAu7K2FDqilDm07JhvB5KfmftKuuX3N9v1mr1M8WeRThAA7hGHw4gTpcQANawGAA9/AIT450Hpxn52VeWnAWPfvwDc7rB223jbI=</latexit>

Q2

<latexit sha1_base64="oSSov1+YeR5wOQ3xJsIct7efluI=">AAAB63icdVDLSgNBEOyNrxhfUY9eBoPgadkNAT14CHjxGNGYQLKG2clsMmR2dpnpFcKST/DiQUG8+kPe/BsnD8FnwTBFVTfdXWEqhUHPe3cKS8srq2vF9dLG5tb2Tnl378YkmWa8yRKZ6HZIDZdC8SYKlLydak7jUPJWODqf+q07ro1I1DWOUx7EdKBEJBhFK12lt9VeueK5VW8K8pv47uz3KrBAo1d+6/YTlsVcIZPUmI7vpRjkVKNgkk9K3czwlLIRHfCOpYrG3AT5bNUJObJKn0SJtk8hmalfO3IaGzOOQ1sZUxyan95U/MvrZBidBrlQaYZcsfmgKJMEEzK9m/SF5gzl2BLKtLC7EjakmjK06ZRsCJ+Xkv9Jq+r6Ndf3L2uV+tkijyIcwCEcgw8nUIcLaEATGAzgHh7hyZHOg/PsvMxLC86iZx++wXn9AJ0QjdE=</latexit>

p2

SCET-2

▸ Extension to next-to-leading power is a hard problem, due to endpoint-divergent 
convolution integrals 

▸ Refactorization-based subtraction (RBS) scheme provides a consistent framework 
for dealing with this problem 

[Beneke et al. ; Moult et al.; Stewart et al.; Bell et al. (2018—2022)]

[Liu, MN (2019, 2020); Liu, Mecaj, MN, Wang (2021); Liu, MN, Schnubel, Wang (2022)]

The Power of Effective Field Theories
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SCET-based factorization theorems become far more complicated:

18

TWO FRONTIERS OF SCET FACTORIZATION

▸ at next-to-leading power in scale ratios, due to endpoint divergences 

▸ when QED corrections are included to reach O(1%) accuracy, since external 
hadron states are in general not singlets under electromagnetism 

▸ hadronic input (decay constants, form factors, LCDAs) need to be redefined 

▸ many additional hadronic matrix elements enter 

▸ leptonic decays become as complicated as non-leptonic decays             
(since leptons  are charged) ℓ−

[Beneke, Bobeth, Szafron (2019); Beneke, Böer, Toelstede, Vos (2020, 2022)]

The Power of Effective Field Theories
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FACTORIZING THE SIMPLEST B DECAY

The Power of Effective Field Theories

Leptonic decays  are interesting for several reasons:B− → ℓ−ν̄ℓ

▸ Determination of |Vub|, largely unaffected by hadronic uncertainties 

▸ Chiral suppression offers sensitive probe of new interactions 

▸ Test of lepton universality by comparing decays with different lepton flavors 
 Belle II will measure  channels with 5-7% uncertainty⇒ ℓ = μ, τ

B-meson decay constant

⇠ m2
` f

2
Bu

|Vub|2
<latexit sha1_base64="EOSs6+BACcA4xn1FyiTNRUYREN8=">AAACDnicbZC7TsMwFIadcivlFmBksagqMaAqKUgwMFSwMBaJXqQmjRzXaa3aSWQ7SFXaJ2DhVVgYQIiVmY23wWkzQMsvWfr0n3N0fH4/ZlQqy/o2Ciura+sbxc3S1vbO7p65f9CSUSIwaeKIRaLjI0kYDUlTUcVIJxYEcZ+Rtj+6yertByIkjcJ7NY6Jy9EgpAHFSGnLMyuOpBxyzyGM9WrOKQy89NpLphlPWl6a+NNJr+aZZatqzQSXwc6hDHI1PPPL6Uc44SRUmCEpu7YVKzdFQlHMyLTkJJLECI/QgHQ1hogT6aazc6awop0+DCKhX6jgzP09kSIu5Zj7upMjNZSLtcz8r9ZNVHDppjSME0VCPF8UJAyqCGbZwD4VBCs21oCwoPqvEA+RQFjpBEs6BHvx5GVo1ar2WbV2d16uX+VxFMEROAYnwAYXoA5uQQM0AQaP4Bm8gjfjyXgx3o2PeWvByGcOwR8Znz8IpZt0</latexit>

�
<latexit sha1_base64="Z/ZMsfkrnWGAxWzku83Q3xdMOo4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGwRwDHvQYwcRAsoTZyWwyZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUNirVhLaI4kp3ImwoZ5K2LLOcdhJNsYg4fYjG1zP/4Ylqw5S8t5OEhgIPJYsZwdZJ7d4NFgL3yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowm187RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW1cDzMmk9RSSRaL4pQjq9DsdTRgmhLLJ45gopm7FZER1phYF1DJhRAsv7xK2rVqcFGt3V1WGvU8jiKcwCmcQwBX0IBbaEILCDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AVQ3ju8=</latexit>

[Belle II Physics Book]
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FACTORIZING THE SIMPLEST B DECAY

The Power of Effective Field Theories

Leptonic decays  are interesting for several reasons:B− → ℓ−ν̄ℓ

▸ QCD matrix element is known with <1% accuracy: 

▸ QED corrections can be of similar magnitude or even larger, due to 
presence of large logarithms  and α ln2(mB/mℓ) α ln(mB/Eγ) ln(mB/mℓ)

B-meson decay constant

⇠ m2
` f

2
Bu

|Vub|2
<latexit sha1_base64="EOSs6+BACcA4xn1FyiTNRUYREN8=">AAACDnicbZC7TsMwFIadcivlFmBksagqMaAqKUgwMFSwMBaJXqQmjRzXaa3aSWQ7SFXaJ2DhVVgYQIiVmY23wWkzQMsvWfr0n3N0fH4/ZlQqy/o2Ciura+sbxc3S1vbO7p65f9CSUSIwaeKIRaLjI0kYDUlTUcVIJxYEcZ+Rtj+6yertByIkjcJ7NY6Jy9EgpAHFSGnLMyuOpBxyzyGM9WrOKQy89NpLphlPWl6a+NNJr+aZZatqzQSXwc6hDHI1PPPL6Uc44SRUmCEpu7YVKzdFQlHMyLTkJJLECI/QgHQ1hogT6aazc6awop0+DCKhX6jgzP09kSIu5Zj7upMjNZSLtcz8r9ZNVHDppjSME0VCPF8UJAyqCGbZwD4VBCs21oCwoPqvEA+RQFjpBEs6BHvx5GVo1ar2WbV2d16uX+VxFMEROAYnwAYXoA5uQQM0AQaP4Bm8gjfjyXgx3o2PeWvByGcOwR8Znz8IpZt0</latexit>

�
<latexit sha1_base64="Z/ZMsfkrnWGAxWzku83Q3xdMOo4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGwRwDHvQYwcRAsoTZyWwyZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUNirVhLaI4kp3ImwoZ5K2LLOcdhJNsYg4fYjG1zP/4Ylqw5S8t5OEhgIPJYsZwdZJ7d4NFgL3yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowm187RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW1cDzMmk9RSSRaL4pQjq9DsdTRgmhLLJ45gopm7FZER1phYF1DJhRAsv7xK2rVqcFGt3V1WGvU8jiKcwCmcQwBX0IBbaEILCDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AVQ3ju8=</latexit>

h0| ū�µ�5b |B�(p)i = ifBup
µ

<latexit sha1_base64="Odly9o6qNjw4qP6NZ6ycD7iibD0="></latexit>

fBu = (189.4± 1.4)MeV
<latexit sha1_base64="PG4fm/95P2nHx8Edd6G7q030Qak=">AAACC3icbVDLSgNBEJz1bXxFPXoZDIKCLLsaUEEh6MWLEME8IBuW2UlvHJx9MNMrhiV3L/6KFw+KePUHvPk3TmIOGi1oKKq66e4KUik0Os6nNTE5NT0zOzdfWFhcWl4prq7VdZIpDjWeyEQ1A6ZBihhqKFBCM1XAokBCI7g5G/iNW1BaJPEV9lJoR6wbi1Bwhkbyi5uhn5/6Wf9k2z08ssteGlHXLu94ux7CHeYXUO/7xZJjO0PQv8QdkRIZoeoXP7xOwrMIYuSSad1ynRTbOVMouIR+wcs0pIzfsC60DI1ZBLqdD3/p0y2jdGiYKFMx0qH6cyJnkda9KDCdEcNrPe4NxP+8VobhYTsXcZohxPx7UZhJigkdBEM7QgFH2TOEcSXMrZRfM8U4mvgKJgR3/OW/pL5nu/v23mW5VDkexTFHNsgm2SYuOSAVck6qpEY4uSeP5Jm8WA/Wk/VqvX23TlijmXXyC9b7F8KimPc=</latexit>

with

[FNAL/MILC (2017)]
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FACTORIZING THE SIMPLEST B DECAY

The Power of Effective Field Theories

Leptonic decays  are interesting for several reasons:B− → ℓ−ν̄ℓ

▸ Quark current  is not gauge invariant under QED  add a soft Wilson line 
 to account for soft photon interactions with the charged lepton 

▸ Problem: Defining  or the corresponding HQET parameter F with such a Wilson 
line is incompatible with F being a local parameter, since it would mix with non-
local matrix elements (LCDAs) under renormalization!

ū γμPL b ⇒
S†

n

fB

B-meson decay constant

⇠ m2
` f

2
Bu

|Vub|2
<latexit sha1_base64="EOSs6+BACcA4xn1FyiTNRUYREN8=">AAACDnicbZC7TsMwFIadcivlFmBksagqMaAqKUgwMFSwMBaJXqQmjRzXaa3aSWQ7SFXaJ2DhVVgYQIiVmY23wWkzQMsvWfr0n3N0fH4/ZlQqy/o2Ciura+sbxc3S1vbO7p65f9CSUSIwaeKIRaLjI0kYDUlTUcVIJxYEcZ+Rtj+6yertByIkjcJ7NY6Jy9EgpAHFSGnLMyuOpBxyzyGM9WrOKQy89NpLphlPWl6a+NNJr+aZZatqzQSXwc6hDHI1PPPL6Uc44SRUmCEpu7YVKzdFQlHMyLTkJJLECI/QgHQ1hogT6aazc6awop0+DCKhX6jgzP09kSIu5Zj7upMjNZSLtcz8r9ZNVHDppjSME0VCPF8UJAyqCGbZwD4VBCs21oCwoPqvEA+RQFjpBEs6BHvx5GVo1ar2WbV2d16uX+VxFMEROAYnwAYXoA5uQQM0AQaP4Bm8gjfjyXgx3o2PeWvByGcOwR8Znz8IpZt0</latexit>

�
<latexit sha1_base64="Z/ZMsfkrnWGAxWzku83Q3xdMOo4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGwRwDHvQYwcRAsoTZyWwyZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUNirVhLaI4kp3ImwoZ5K2LLOcdhJNsYg4fYjG1zP/4Ylqw5S8t5OEhgIPJYsZwdZJ7d4NFgL3yxW/6s+BVkmQkwrkaPbLX72BIqmg0hKOjekGfmLDDGvLCKfTUi81NMFkjIe066jEgpowm187RWdOGaBYaVfSorn6eyLDwpiJiFynwHZklr2Z+J/XTW1cDzMmk9RSSRaL4pQjq9DsdTRgmhLLJ45gopm7FZER1phYF1DJhRAsv7xK2rVqcFGt3V1WGvU8jiKcwCmcQwBX0IBbaEILCDzCM7zCm6e8F+/d+1i0Frx85hj+wPv8AVQ3ju8=</latexit>

[Cornella, König, MN (2022)]
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FACTORIZING THE SIMPLEST B DECAY

The Power of Effective Field Theories

QED effects are well under control for scales  (effective weak Hamiltonian) 
and  (Low’s theorem)

μ ≫ mb
μ ≪ Λ2

QCD/mB

▸ Intermediate scale range gives rise to intricate effects, as photons can resolve 
the inner structure of the B meson, above and below the scale !ΛQCD

Radiative Corrections and Excited States

Below ΛQCD structure-dependent corrections occur because of the small mass
difference between the B (mB = 5.279 GeV) and the B ∗ (mB ∗ = 5.325 GeV).

[Becirevic et al, 0907.1845]

The initital-state B meson can emit a photon and transition into an excited state.

The B → B ∗γ interaction is suppressed, but in turn the subsequent B ∗ → ℓν decay is
enhanced wrt. the scalar case.

#BB ∗ ⊃ −
e gB ∗

2mB
F̃µν(V

µν
B ∗ Φ

†
B +h.c.) − yB ∗ ℓ̄ /VB ∗ν +

!!DµΦB

!!2 − ȳB

mB
(DµΦB ) ℓ̄γµν

subleading
leading

leading
subleading

Structure-Dependent QED Corrections in Exclusive Leptonic B-Decays

2

photons with energies below a resolution scale Es. The
threshold Es and a related scale (m`/mB)Es complete
the list of relevant scales. We have analyzed the factor-
ization of these scales using a multi-step matching proce-
dure, in which the e↵ective weak Lagrangian is matched
onto two versions of soft-collinear e↵ective theory [14–17],
Le↵ ! SCET-1 ! SCET-2. In a final step, the SCET-2
operators are matched onto a low-energy e↵ective theory
consisting of products of Wilson lines, which are needed
to account for soft photon emissions.

In this Letter, we discuss the more intricate factoriza-
tion properties of the decay amplitude above the scale
Es, which is sensitive to virtual photon exchange only.
We have established the factorization theorem

A
virtual
B!`⌫̄ =

X

j

HjSjKj +
X

i

Hi ⌦ Ji ⌦ Si ⌦Ki , (4)

where the hard functionsHi account for matching correc-
tions at the scale mb, the jet functions Ji encode match-
ing corrections at the scale

p
mb⇤QCD, and the soft func-

tions are hadronic matrix elements of the B meson de-
fined in heavy-quark e↵ective theory (HQET) [18–21].
The collinear functions Ki describe the leptonic matrix
elements, encoding the dependence on the scale m`. The
first set of terms arise from SCET-1 operators with a soft
spectator quark, whereas the second set descents from
operators in which the spectator quark is described by
a hard-collinear field, carrying a significant fraction of
the charged-lepton momentum. The symbol ⌦ indicates
that the product of component functions must be under-
stood as a convolution, since some of the functions share
common momentum variables, over which one must inte-
grate. In SCET-2, interactions between soft and collinear
particles can be been eliminated at the Lagrangian level
using field redefinitions [15, 22]. The remnants of these

interactions appear in the form of soft Wilson lines S(f)
n

for each charged fermion f , where the light-like vector
nµ is aligned with the direction of the muon.
The appearance of a hard-collinear scale between mb

and ⇤QCD is an important feature of the factorization
formula. Electromagnetic radiation with virtuality q2 ⇠

mb⇤QCD emitted from the muon can recoil against the
meson and probe its internal structure. This e↵ect arises
from the interactions between soft and collinear particles
[23–25], which in SCET-1 are mediated by the exchange
of a virtual photon between the muon and the soft spec-
tator quark in the B meson, as illustrated in Figure 1.
After matching onto SCET-2 this gives rise to non-local
operators, whose component fields have light-like sepa-
ration. Their matrix elements define the B-meson light-
cone distribution amplitudes (LCDAs) [26–29]. From a
systematic analysis of the operators contributing to the
decay at O(⇤QCD/mb), we find that the amplitude is sen-
sitive to a hadronic parameter F generalizing the concept
of the B-meson decay constant, as well as to two- and
three-particle LCDAs.

FIG. 1. Examples of SCET-1 loop diagrams generating
structure-dependent QED corrections at the hard-collinear
scale. The up-quark and muon leaving the weak-interaction
operator carry fractions x and x̄ = 1 � x of the large com-
ponent n̄ · p` of the muon momentum. The resulting con-
tributions involve convolutions with a two-particle (left) and
three-particle (right) LCDA of the B meson.

A natural definition of the parameter F would be in
terms of the B-meson matrix element of the operator

OA = n̄µ ūs�
µPLhv S

(`)†
n , (5)

where us denotes a soft quark field, hv the e↵ective b-
quark field in HQET, and n̄µ is a light-like reference vec-
tor in the direction of the neutrino momentum, which
appears in the evaluation of the leptonic matrix element.
The soft Wilson line arises from the decoupling of soft
interactions from the muon. It ensures that the operator
is gauge invariant under both QCD and QED. This nec-
essarily introduces a process dependence in F , since the
Wilson line knows about the existence of a single charged
particle with charge Q` in the final state [4]. We would
then define

h0|OA |B�(v)i = �
i

2

p
mB F v · n̄ , (6)

where v · n̄ = 1 with our choice of reference vectors, and
the right-hand side depends on mB only via the rela-
tivistic normalization of the meson state. Comparison
with (2) shows that F ⇡

p
mB fB up to radiative and

power corrections. However, in the presence of QED cor-
rections the above definition is problematic, because the
operator OA is ill defined. In fact, its anomalous dimen-
sion exhibits a sensitivity to IR regulators, which must be
removed with a subtraction, for example by dividing the
operator by a vacuum matrix element of suitably defined
Wilson lines [4, 13]. Still, there exists another problem
with the factorization formula (4), as some of the con-
volution integrals su↵er from endpoint divergences. This
is a common problem of NLP factorization theorems [6–
8, 10, 30–37]. Neglecting corrections of O(↵↵s), the di-
vergent convolutions are those involving the hard and
jet functions. These divergences are troublesome, be-
cause they give rise to 1/✏ poles that cannot be removed
by renormalizing the hard and jet functions individually,
and hence break the desired factorization of scales. In-
terestingly, we find that both problems are solved simul-
taneously: removing the endpoint divergences using the
RBS scheme redefines the soft operator OA in such a way
that it becomes well-defined.

[Cornella, König, MN (2022)]
SCET factorization theorem for virtual corrections Heavy-meson EFT for real emissions

[Cornella, Ferré, König, MN, to appear]
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The Power of Effective Field Theories

While in the absence of QED effects  is governed by only 3 scales 
( ), with QED effects included 8 scales become relevant:

B− → μ−ν̄μ
mW ≫ mb ≫ ΛQCD

February 2023 || KEK workshop Claudia Cornella

Scales

6

In the presence of QED corrections,  is sensitive to many scales:B → μν̄

 ©Matthias König

Es ∼
mμΛQCD

mB

Es
mμ

mb

mb

mW

mbΛQCD

mμ ∼ ΛQCD

Fock-state description of B meson:  | ūb⟩ + | ūgb⟩ + …

February 2023 || KEK workshop Claudia Cornella

Scales

6

In the presence of QED corrections,  is sensitive to many scales:B → μν̄

 ©Matthias König

Es ∼
mμΛQCD

mB

Es
mμ

mb

mb

mW

mbΛQCD

mμ ∼ ΛQCD

February 2023 || KEK workshop Claudia Cornella

Scales

6

In the presence of QED corrections,  is sensitive to many scales:B → μν̄

 ©Matthias König

Es ∼
mμΛQCD

mB

Es
mμ

mb

mb

mW

mbΛQCD

mμ ∼ ΛQCD

B meson described as a point-like pseudo-scalar boson 
? [Beneke, Bobeth, Szafron (2019)]

[e.g.: Isidori, Nabeebaccus, Zwicky (2020); is     
ee:    Dai, Kim, Leibovich (2021)]
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FACTORIZING THE SIMPLEST B DECAY

The Power of Effective Field Theories

We have analyzed the factorization of the  amplitude including QED 
corrections in SCET & HPET:

B− → μ−ν̄μ

February 2023 || KEK workshop Claudia Cornella

Scales

6

In the presence of QED corrections,  is sensitive to many scales:B → μν̄

 ©Matthias König

Es ∼
mμΛQCD

mB

Es
mμ

mb

mb

mW

mbΛQCD

mμ ∼ ΛQCD

[Cornella, König, MN (2022)]

▸ Relevant modes in the EFT: 
▸ hard 
▸ hard-collinear 
▸ soft 
▸ collinear 
▸ soft-collinear 

▸ Relevant modes for real QED corrections: 
▸ ultra-soft 
▸ ultra-soft-collinear

resolve the light-cone structure of the B meson 
(à la Brodsky-Lepage)
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FACTORIZING THE SIMPLEST B DECAY

The Power of Effective Field Theories

We have analyzed the factorization of the  amplitude including QED 
corrections in SCET & HPET:

B− → μ−ν̄μ

February 2023 || KEK workshop Claudia Cornella

Scales

6

In the presence of QED corrections,  is sensitive to many scales:B → μν̄

 ©Matthias König

Es ∼
mμΛQCD

mB

Es
mμ

mb

mb

mW

mbΛQCD

mμ ∼ ΛQCD

▸ Relevant modes in the EFT: 
▸ hard 
▸ hard-collinear 
▸ soft 
▸ collinear 
▸ soft-collinear 

▸ Relevant modes for real QED corrections: 
▸ ultra-soft 
▸ ultra-soft-collinear

Effective weak Hamiltonian

SCET-1

SCET-2

HMEFT

[Cornella, König, MN (2022)]
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FACTORIZING THE SIMPLEST B DECAY  —  SCET-1 OPERATOR BASIS

The Power of Effective Field Theories

in the definition of the operators. This factor must be compensated by a hard scale in the
denominator. In SCET-1, the soft quark is described either by a soft quark field or by a
hard-collinear quark field. The conversion to a soft field then happens in the matching onto
SCET-2 and requires a photon loop. For completeness, we mention that operators containing
a soft lepton field do not contribute to the order we are working, see Section ?? below. [add
subsection later]

2.1.1 Operators with a soft spectator quark

Focussing first on operators containing only the four fermion fields involved in the process, we
have the options

O
A(

9
2 )

0
= ūs�

↵

?PLbv X̄
(`)

hc
�?
↵
PL⌫c ,

O
A(

11
2 )

1
=

m`

n̄ · Phc

ūs /̄nPLbv X̄
(`)

hc
PL⌫c ,

O
A(

11
2 )

2
=

m`

mB

ūsPR bv X̄
(`)

hc
PL⌫c ,

OA(5)

3
=

1

n̄ · Phc

ūs /̄nPLbv
⇥
X̄

(`)

hc
(�i
 �
/@?)

⇤
PL⌫c ,

OA(5)

4
=

1

mB

ūsPR bv
⇥
X̄

(`)

hc
(�i
 �
/@?)

⇤
PL⌫c .

(19)

[In general, for operators containing a soft spectator quark, there is no hard-collinear
scale, so the matching onto SCET-2 is trivial: just replace all hard-collinear fields by
collinear ones and add the soft Wilson lines. I believe one can show in general that the
collinear matrix elements of OA

3,4
vanishes to all orders of perturbation theory, provided

we choose p
?
`
= 0. Hence, one might also eliminate these two operators from the basis,

unless they mix into other operators under QED renormalization!] Here and below, the
superscript in parenthesis shows the power counting in �, i.e. the first operator scales like �9/2

and so on. Relation (13) implies that contracting the two transverse Lorentz indices in the first
operator with ✏? rather than g? yields nothing new. In the second and fourth operator the
label operator n̄ ·Phc projects out the large component of the total hard-collinear momentum,
which in our case equals n̄ · p`. There is no need to include operators in which /̄n is replaced
by /n. Using that /vbv = bv, it is straightforward to derive the relation

1

mB

ūsPR bv =
1

2n̄ · Phc

ūs /̄nPLbv +
v · n̄
2mB

ūs /nPLbv , (20)

which shows that such an operator can be expressed in terms of the operators in (19). Here
we have used momentum conservation and the relation v2 = n · v n̄ · v = 1. Replacing the
hard-collinear lepton field by its collinear counterpart, the first operator in (19) matches onto a
SCET-2 operator scaling like �5, whereas the remaining operators yield structures scaling like
�6. The first operator can mediate the decay B⇤� ! `� ⌫̄`, but it has a vanishing projection
onto the B meson and hence does not contribute to B� ! `� ⌫̄` decay. We will therefore omit
it from the basis.

6

Our task is to find all relevant SCET-1 operators which can match onto O(�6) operators
in SCET-2. If these operators do not include the lepton mass explicitly, they must contain
additional hard-collinear fields or derivatives, so that a factor of m` can be produced either in
the matching onto SCET-2, when hard-collinear loop graphs are evaluated, or in the calculation
of the collinear matrix elements in SCET-2. In deriving the structure of the relevant operators,
one needs to understand the systematics of the matching onto SCET-2, which will be discussed
in detail in Section 3. Here we anticipate the needed results. Starting from the vector operator
X̄

(`)

hc
�?
↵
(1� �5) ⌫c = O(�3/2) as a building block, one pays a penalty of a factor �1/2 converting

X̄
(`)

hc
! X̄

(`)

c in the matching onto SCET-2 and another factor �1/2 to generate the lepton mass
m`, which is a power-suppressed parameter in SCET-1. Since the soft quark current scales
like �3, it follows that one can a↵ord only one additional factor �1/2 to get SCET-2 operators
of O(�6). We thus need to consider operators containing a single transverse object in the
hard-collinear sector instead of the lepton mass in addition to the operators in (19). If this
object carries the Lorentz index �, then the quark bilinear must contain a two-index Dirac
structure �↵�

? . Using the relations (13) and (15), any such structure can be reduced to g↵�? .
This explains the structure of the last two operators in (19).

The four type-A operators contain only a single hard-collinear field. Additional operators,
which we name type-B, can be constructed using a hard-collinear gauge field. The gauge-
invariant building blocks for the hard-collinear gluon and photon fields are defined as [6]

G
µ

hc
(x) = W †

hc
(x)

⇥
iDµWhc(x)

⇤
= gs

Z
0

�1
ds n̄↵

⇥
W †

hc
G↵µ

hc
Whc

⇤
(x+ sn̄) ,

A
(`)µ

hc
(x) = W (`)†

hc
(x)

⇥
iDµW (`)

hc
(x)

⇤
= Q` e

Z
0

�1
ds n̄↵F

↵µ

hc
(x+ sn̄) ⌘ Q` A

µ

hc
(x) ,

(21)

where Whc without a superscript denotes the hard-collinear Wilson line including the gluon
field only. In analogy with (??), we define

OB (5)

1
=

1

n̄ · Phc

ūs /̄nPLbv X̄
(`)

hc
/A?
hc [y]

PL⌫c ,

OB (5)

2
=

1

mB

ūsPR bv X̄
(`)

hc
/A?
hc [y]

PL⌫c ,

OB (5)

3
=

1

n̄ · Phc

ūs /̄nPLG
?↵

hc [y]
bv X̄

(`)

hc
�?
↵
PL⌫c ,

OB (5)

4
=

1

mB

ūsPR G
?↵

hc [y]
bv X̄

(`)

hc
�?
↵
PL⌫c .

(22)

[It seems to me that the last two operators receive an additional O(�) suppression in
the matching onto SCET-2, since the hc gluon and the soft quark need to be converted
into a hc quark, which in turn needs to be converted into a hc (or c) photon plus a
soft quark. In this case the operators could be omitted from the basis. Check this!] As
mentioned earlier, when an operator contains two hard-collinear fields, we need to indicate
how these fields share the large component of the total hard-collinear momentum carried by
the operator. We assign the momentum fraction y to the hard-collinear gauge field, which
implies that the charged lepton carries the momentum fraction (1� y).

7

O
D (

9
2 )

7
=

1

m2

B

X̄
(u)

hc [y1]
(�i �@ ↵

? ) /A?
hc [y2]

PLbv X̄
(`)

hc
�?
↵
PL⌫c , (28)

O
D (

9
2 )

8
=

1

m2

B

X̄
(u)

hc [y1]
(�i �@ ↵

? ) /G?
hc [y2]

PLbv X̄
(`)

hc
�?
↵
PL⌫c ,

O
D (

9
2 )

9
=

1

m2

B

X̄
(u)

hc [y1]

�
i/@?A

?↵

hc [y2]

�
PLbv X̄

(`)

hc
�?
↵
PL⌫c ,

O
D (

9
2 )

10
=

1

m2

B

X̄
(u)

hc [y1]

�
i/@?G

?↵

hc [y2]

�
PLbv X̄

(`)

hc
�?
↵
PL⌫c ,

OD (5)

12
=

m`

m2

B

X̄
(u)

hc [y1]
/A?
hc [y2]

PLbv X̄
(`)

hc
PL⌫c ,

OD (5)

13
=

m`

m2

B

X̄
(u)

hc [y1]
/G?
hc [y2]

PLbv X̄
(`)

hc
PL⌫c .

The large component of the total hard-collinear momentum is now shared among three fields.
We assign momentum fractions y1 and y2 to the up-quark and the gauge field, respectively,
which implies that the charged lepton carries momentum fraction y3 = (1� y1 � y2).

We finally consider the type-E operators, containing two transverse hard-collinear, which
can be chosen as

O
E (

9
2 )

1
=

1

m2

B

X̄
(u)

hc [y1]
/A?
hc [y2]

PLbv X̄
(`)

hc
/A?
hc [y3]

PL⌫c ,

O
E (

9
2 )

2
=

1

m2

B

X̄
(u)

hc [y1]
/G?
hc [y2]

PLbv X̄
(`)

hc
/A?
hc [y3]

PL⌫c ,

O
E (

9
2 )

3
=

1

m2

B

X̄
(u)

hc [y1]
/A?
hc [y2]

G
?↵

hc[y3]
PLbv X̄

(`)

hc
�?
↵
PL⌫c ,

O
E (

9
2 )

4
=

1

m2

B

X̄
(u)

hc [y1]
/G?
hc [y2]

G
?↵

hc[y3]
PLbv X̄

(`)

hc
�?
↵
PL⌫c ,

O
E (

9
2 )

5
=

1

m2

B

X̄
(u)

hc [y1]
G
?↵

hc[y2]
/G?
hc [y3]

PLbv X̄
(`)

hc
�?
↵
PL⌫c .

(29)

2.2 Results for the hard matching coe�cients

Based on the operator basis constructed in Section 2.1, we write the e↵ective SCET-1 La-
grangian for B� ! `� ⌫̄` decay in the form [Say somewhere that we set x = 0, otherwise
there would be a phase factor e

�imb v·x in the Lagrangian and soft fields would need to

10

2.1.2 Operators with a hard-collinear spectator quark

We now consider operators in which the spectator quark carries a large fraction of the lepton
momentum and hence is described by a hard-collinear field in SCET-1. In the matching
onto the ultimate e↵ective theory SCET-2, this large momentum is transferred to the charged
lepton via the exchange of a hard-collinear or collinear gauge boson, and a soft spectator quark
remains. We find that the resulting operators contain type-C operators containing two hard-
collinear fermion fields, type-D operators containing two hard-collinear fermion fields along
with a hard-collinear gauge field, and type-E operators featuring two hard-collinear fermion
fields and two hard-collinear gauge fields.

We begin with the type-C operators, which can be chosen as

O
C (

9
2 )

1
=

m`

mB

X̄
(u)

hc [y]
PR bv X̄

(`)

hc
PL⌫c ,

OC (5)

2
=

m`

m2

B

⇥
X̄

(u)

hc [y1]
(�i
 �
/@?)

⇤
PLbv X̄

(`)

hc
PL⌫c ,

O
C (4,

9
2 )

3
=

1

mB

X̄
(u)

hc [y]
(�i �D↵

s?)PR bv X̄
(`)

hc
�?
↵
PL⌫c ,

O
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9
2 )

4
=

1

mB

X̄
(u)

hc [y]
PR bv

⇥
X̄

(`)

hc
(�i
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/Ds?)

⇤
PL⌫c ,

O
C (

9
2 )

5
=

1

m2

B

X̄
(u)

hc [y]
(�i
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/@?)PLbv

⇥
X̄

(`)

hc
(�i
 �
/@?)

⇤
PL⌫c ,

(23)

where the two hard-collinear fields again share the total hard-collinear momentum. Operators
containing /n next to the hard-collinear quark spinor can be removed using relation (20) with

ūs replaced by X̄
(u)

hc [y]
. The other obvious choice

O
C (

7
2 )

0
= X̄

(u)

hc [y]
�↵

?PLbv X̄
(`)

hc
�?
↵
PL⌫c = 0 (24)

vanishes due to the first magic identity in (14). It can therefore be omitted from the basis.
In the matching onto SCET-2, to be discussed in detail in Section 3, we show that the

conversion of the two hard-collinear fields in the first two operators in (24) into a soft quark
field and a collinear lepton field costs a factor �3/2, yielding SCET-2 operators of order �6,
which give leading-order contributions to the process of interest. The remaining operators
have been built starting from the leptonic vector current X̄(`)

hc
�?
↵
(1��5) ⌫c as a building block,

as in (24), but adding additional derivatives or gauge fields and changing the Dirac structure
in such a way that the operator no longer vanishes. We will show in Section 3 that converting
the two hard-collinear fields into a soft quark, a collinear lepton and a factor of m` costs a
factor �3/2 and requires a hard-collinear photon loop. Since �7/2 · �3/2 = �5, we can a↵ord to
pay up to two additional factors of �1/2 in order to get SCET-2 operators of O(�6). This allows
us to add one or two transverse hard-collinear fields or derivatives, or a soft derivative. Note

that the covariant derivative Dµ

s
in the operators O

C (4,
9
2 )

2,3
contains only the soft gauge fields

8

of O(�), even if it acts on a hard-collinear field.1 These operators scale like �4 for the terms
not involving the soft gluon field and �9/2 for the terms including it. Once again, the Dirac
structure in the quark bilinear can be reduced to the one shown here by using the identities
(13), (15) and (20). In general, operators containing two transverse hard-collinear objects

with Lorentz indices ↵ and �, such as O
C (

9
2 )

4
, need have to have the Dirac structure

�↵

?PL ⌦ ��

?PL . (25)

If we contract this with g?
↵�

or ✏?
↵�
, the result vanishes by the magic identity. Hence, each

index must be contracted with one of the transverse objects.
An additional operator

1

mB

X̄
(u)

hc [y]
PR

�
iD↵

s?bv
�
X̄

(`)

hc
�?
↵
PL⌫c = O

C (4,
9
2 )

2
+O

C (4,
9
2 )

3
⇠ �9/2 (26)

can be reduced to the above ones using an integration by parts (recall that we set the transverse
momentum of the neutrino to be zero). It arises from 1/mb corrections to the heavy-quark field
in HQET in the heavy-to-light current operator in SCET-1, which have not yet been studied
in the literature but do give non-vanishing contributions. The other possible single-derivative
operator (recall that iv ·Dsbv = 0 in HQET)
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vanishes due to the first magic identity in (14). The same is true for operators containing a
derivative in · @ acting on a hard-collinear field.

In an analogous way, the type-D operators containing two hard-collinear fermion fields and
a hard-collinear gauge field can be written in the form2

OD (4)

1
=

1

mB

X̄
(u)

hc [y1]
PR bv X̄

(`)

hc
/A?
hc [y2]

PL⌫c ,

OD (4)

2
=

1

mB

X̄
(u)

hc [y1]
G
?↵

hc [y2]
PR bv X̄

(`)

hc
�?
↵
PL⌫c ,

O
D (

9
2 )

3
=

1

m2

B

X̄
(u)

hc [y1]
(�i
 �
/@?)PLbv X̄

(`)

hc
/A?
hc [y2]

PL⌫c ,

O
D (

9
2 )

4
=

1

m2

B

X̄
(u)

hc [y1]
(�i
 �
/@?)G

?↵

hc[y2]
PLbv X̄

(`)

hc
�?
↵
PL⌫c ,

O
D (

9
2 )

5
=

1

m2

B

X̄
(u)

hc [y1]
/A?
hc [y2]

PLbv
⇥
X̄

(`)

hc
(�i
 �
/@?)

⇤
PL⌫c ,

O
D (

9
2 )

6
=

1

m2

B

X̄
(u)

hc [y1]
/G?
hc [y2]

PLbv
⇥
X̄

(`)

hc
(�i
 �
/@?)

⇤
PL⌫c ,

1
As a result, these operators do not have homogeneous power counting in SCET-1. If one decomposes them

into operators with homogeneous power counting, some of these operators are not explicitly gauge invariant,

but they will become gauge invariant after the soft decoupling transformation has been applied, see Section 3.
2
Operators containing n ·Ahc vanish by virtue of the magic identity.
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The large component of the total hard-collinear momentum is now shared among three fields.
We assign momentum fractions y1 and y2 to the up-quark and the gauge field, respectively,
which implies that the charged lepton carries momentum fraction y3 = (1� y1 � y2).

We finally consider the type-E operators, containing two transverse hard-collinear, which
can be chosen as
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(29)

2.2 Results for the hard matching coe�cients

Based on the operator basis constructed in Section 2.1, we write the e↵ective SCET-1 La-
grangian for B� ! `� ⌫̄` decay in the form [Say somewhere that we set x = 0, otherwise
there would be a phase factor e

�imb v·x in the Lagrangian and soft fields would need to

10

Wilson coefficients are hard functions: 
 Hi(mb, μ)

[Cornella, Ferré, König, MN, to appear]
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contribution without gluons, only the SCET I operators OD contribute to the match-

ing.
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32

2-particle LCDAs

3-particle LCDAs

HQET decay constant F

▸ Quite generically, things get very messy at next-to-leading power!
[Cornella, Ferré, König, MN, to appear]
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FACTORIZATION FORMULA FOR VIRTUAL CORRECTIONS

The Power of Effective Field Theories

▸ Hard functions: matching corrections at   

▸ Jet functions: matching corrections at   

▸ Soft functions: -meson matrix elements (local and non-local) in HQET 

▸ Collinear functions: leptonic matrix elements,  

μ ∼ mb

μ ∼ (mbΛQCD)1/2

B

μ ∼ mμ

SCET-1 operators with soft 
spectator quark

SCET-1 operators with hard-
collinear spectator quark

convolution

𝒜virtual
B→ℓν̄ = ∑

j

Hj Sj Kj +∑
i

Hi ⊗ Ji ⊗ Si ⊗ Ki
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FACTORIZATION FORMULA FOR VIRTUAL CORRECTIONS

The Power of Effective Field Theories

▸ Endpoint-divergent convolution integrals: 
<latexit sha1_base64="Fc/RuoEJhrKSekUkZp7uQRvvxnI="></latexit>

Avirtual
B!`⌫̄ = �4GFp

2
KEW(µ)Vub

m`

mb
KA(m`) ū(p`)PLv(p⌫)


HA(mb)SA+

Z
d!

Z 1

0
dxHB(mb, x) JB(mb!, x)SB(!)

�<latexit sha1_base64="Fc/RuoEJhrKSekUkZp7uQRvvxnI="></latexit>
Avirtual

B!`⌫̄ = �4GFp
2
KEW(µ)Vub

m`

mb
KA(m`) ū(p`)PLv(p⌫)


HA(mb)SA+

Z
d!

Z 1

0
dxHB(mb, x) JB(mb!, x)SB(!)

�
∝

▸ Focus on second term: 
▸ Shared variable  = collinear momentum fraction carried 

by the spectator quark 

▸     is endpoint divergent 

▸ Cannot be removed with standard RG techniques, but 
treatable within the refactorization-based subtraction 
scheme

x

HB ∼ x−ϵ, JB ∼ x−1−ϵ ⇒ HB ⊗ JB

[Liu, MN (2019); Liu, Mecaj, MN, Wang (2020); Beneke et al. (2022)]
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FACTORIZATION FORMULA FOR VIRTUAL CORRECTIONS

The Power of Effective Field Theories

▸ Endpoint-divergent convolution integrals: 
<latexit sha1_base64="Fc/RuoEJhrKSekUkZp7uQRvvxnI="></latexit>

Avirtual
B!`⌫̄ = �4GFp

2
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Z 1

0
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�<latexit sha1_base64="Fc/RuoEJhrKSekUkZp7uQRvvxnI=">AAADB3icbVLLbhMxFPUMrxJeKSwR0g0RUiLSaKaqgA1SEwRUlEVQSVIpTi2P4yRWPQ9sT9RoNDs2/AobFiDEll9gx9/gmckCWq5kzbnnnnOvx3aQSKGN5/123EuXr1y9tnW9duPmrdt36tt3RzpOFeNDFstYHQdUcykiPjTCSH6cKE7DQPJxcPqiqI9XXGkRR+/NOuHTkC4iMReMGkuRbecBZJhRCb2cZH1sYsylxAFVOErzkwyrEFZCmZTKvAY2nsMO4LmiLNuD1+RVnmH9QZndHA5JKX45zls4TNswIlka5LhTiUNS9M3tt+DKToek16rotlXZiZC2kiqHAXkLsCrSyLYCLPncTAAOSkvQhiPSA9x4jBu4AVhEBjdmOA75gtq8bF6QxDvxC8XsDHCnMPcLc+fMjoM3VQKVy3LWc2S5Km8DVmKxNFMg9abX9cqAi8DfgCbaxIDUf+FZzNKQR4ZJqvXE9xIzzagygkme13CqeULZKV3wiYURDbmeZuU95vDIMjOYx8quyEDJ/u3IaKj1OgysMqRmqc/XCvJ/tUlq5s+mmYiS1PCIVYPmqQQTQ/EoYCYUZ0auLaBMCbtXYEtqL87Yp1Ozh+Cf/+WLYLTb9Z90/Xd7zf3+5ji20H30ELWQj56ifXSABmiImPPR+ex8db65n9wv7nf3RyV1nY3nHvon3J9/ACMO6Q8=</latexit>
Avirtual

B!`⌫̄ = �4GFp
2
KEW(µ)Vub

m`

mb
KA(m`) ū(p`)PLv(p⌫)


HA(mb)SA+

Z
d!

Z 1

0
dxHB(mb, x) JB(mb!, x)SB(!)

�
∝

▸ After refactorization, the convolutions are well defined and the HQET decay 
constant F contained in SA is redefined in such a way that it now no longer 
mixes with non-local matrix elements under renormalization 

▸ Would be interesting to compute this redefined HQET parameter using 
lattice QCD!

reshuffle divergent terms
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FACTORIZATION FORMULA FOR VIRTUAL CORRECTIONS

The Power of Effective Field Theories

Decay amplitude including virtual QED corrections at : 

with:

𝒪(α)

4

The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
cle. Generalizing (6), we define

hX� |O
(⇤)
A |B�

i = �
i

2

p
mB F (µ,⇤, w) hX� |S

(B)
vB

S(`)†
v` |0i ,

(17)
where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain

�F = �CF
3↵s

4⇡
+
3↵

4⇡

✓
Q2

` �Q2
b +

2

3
Q`Qu ln

⇤2

µ2

◆
. (18)

It is also possible to control the dependence on the cuto↵

⇤ using perturbation theory. From (16), it follows that

d lnF

d ln⇤
= Q`Qu

↵

2⇡

Z
d!��(!) ln

!⇤

µ2
� 1 + . . .

�
, (19)

where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)

A
virtual
B!`⌫̄ = �

4GF
p
2

KEWVub
m`

mb
KA(m`) ū(p`)PLv(p⌫)

·
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h
HB(mb, x)JB(mb!, x)

� ✓(�� x) JHB(mb, x)KJJB(mb!, x)K
i
SB(!)

�
.

(20)

The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).

We are now ready to present our main result. The
B�

! µ�⌫̄µ decay amplitude including virtual QED cor-
rections can be written as

A
virtual
B!`⌫̄ = i

p
2GF KEW(µ)Vub

m`

mb

p
mB F (µ,mb, w)

· ū(p`)PLv(p⌫)
h
M2p(µ) +M3p(µ)

i
, (21)

where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order

M2p(µ) = 1 +
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M3p(µ) =
↵

⇡
Q`Qu

Z 1

0
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Z 1

0
d!g �3g(!,!g)


1

!g
ln

✓
1 +

!g
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◆
�

1

! + !g

�
.

In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by

�3g(!,!g) =
1

!g

h
 A(!,!g)�  V (!,!g)

i
, (23)
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
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(B)
vB

S(`)†
v` |0i ,

(17)
where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain
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where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
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where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.
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lem mentioned earlier, such that the anomalous dimen-
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where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
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A
virtual
B!`⌫̄ = �

4GF
p
2

KEWVub
m`

mb
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
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the evolution equation (19).
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been
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The proper definition of the hadronic parameter F is
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where X� denotes a state of n � 0 soft photons, and
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like Wilson line S(`)
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S(`)
n appears on both sides of this relation, thus e↵ec-
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visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain
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It is also possible to control the dependence on the cuto↵
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where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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KA(m`) ū(p`)PLv(p⌫)

·


HA(mb)S

(⇤)
A +

Z
d!

Z 1

0
dx

h
HB(mb, x)JB(mb!, x)

� ✓(�� x) JHB(mb, x)KJJB(mb!, x)K
i
SB(!)

�
.

(20)

The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The

B�
! µ�⌫̄µ decay amplitude including virtual QED cor-

rections can be written as

A
virtual
B!`⌫̄ = i

p
2GF KEW(µ)Vub

m`

mb

p
mB F (µ,mb, w)
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by

�3g(!,!g) =
1
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h
 A(!,!g)�  V (!,!g)

i
, (23)

4

The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
cle. Generalizing (6), we define
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where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain
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It is also possible to control the dependence on the cuto↵

⇤ using perturbation theory. From (16), it follows that

d lnF

d ln⇤
= Q`Qu

↵

2⇡

Z
d!��(!) ln

!⇤

µ2
� 1 + . . .

�
, (19)

where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The

B�
! µ�⌫̄µ decay amplitude including virtual QED cor-

rections can be written as
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virtual
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by

�3g(!,!g) =
1
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h
 A(!,!g)�  V (!,!g)

i
, (23)
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
cle. Generalizing (6), we define
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A |B�

i = �
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mB F (µ,⇤, w) hX� |S

(B)
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S(`)†
v` |0i ,

(17)
where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain
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It is also possible to control the dependence on the cuto↵

⇤ using perturbation theory. From (16), it follows that
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where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The

B�
! µ�⌫̄µ decay amplitude including virtual QED cor-

rections can be written as

A
virtual
B!`⌫̄ = i

p
2GF KEW(µ)Vub

m`

mb

p
mB F (µ,mb, w)
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by

�3g(!,!g) =
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Decay amplitude including virtual QED corrections at : 

with:
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
cle. Generalizing (6), we define
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(17)
where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain
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It is also possible to control the dependence on the cuto↵
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where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).

We are now ready to present our main result. The
B�

! µ�⌫̄µ decay amplitude including virtual QED cor-
rections can be written as
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
cle. Generalizing (6), we define
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where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain
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It is also possible to control the dependence on the cuto↵

⇤ using perturbation theory. From (16), it follows that

d lnF

d ln⇤
= Q`Qu

↵

2⇡

Z
d!��(!) ln

!⇤

µ2
� 1 + . . .

�
, (19)

where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The

B�
! µ�⌫̄µ decay amplitude including virtual QED cor-

rections can be written as
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by

�3g(!,!g) =
1

!g

h
 A(!,!g)�  V (!,!g)

i
, (23)
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
cle. Generalizing (6), we define
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where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain
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It is also possible to control the dependence on the cuto↵

⇤ using perturbation theory. From (16), it follows that

d lnF

d ln⇤
= Q`Qu

↵

2⇡

Z
d!��(!) ln

!⇤

µ2
� 1 + . . .

�
, (19)

where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The

B�
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
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where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
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where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The

B�
! µ�⌫̄µ decay amplitude including virtual QED cor-

rections can be written as
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
cle. Generalizing (6), we define
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where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line

S(`)
n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
sion of the parameter F , defined via dF (µ,⇤, w)/d lnµ =
��F F (µ,⇤, w), is now local and independent of IR reg-
ulators. At one-loop order, we obtain
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where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The
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! µ�⌫̄µ decay amplitude including virtual QED cor-

rections can be written as
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by
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The proper definition of the hadronic parameter F is
obtained by matching the B-meson matrix element of
this operator onto a Wilson-line operator in a low-
energy e↵ective theory for very soft photons (with E� ⌧

⇤QCD,mµ), which see the B meson as a point-like parti-
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where X� denotes a state of n � 0 soft photons, and
w ⌘ vB · v`. It is crucial that, unlike in [4], the time-

like Wilson line S(`)
v` and not the light-like Wilson line
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n appears on both sides of this relation, thus e↵ec-

tively implementing the non-perturbative matching en-
visioned in the same reference. As a result, the quan-
tity F (µ,⇤, w) should be interpreted as a form factor
rather than a decay constant. The Wilson-line operator
contains ultraviolet divergences, which have been calcu-
lated in the context of heavy-quark currents in HQET
[42]. They must be removed by renormalization. Since
w ' mB/2m` is parametrically large in our case, ma-
trix elements of the Wilson-line operator receive contri-
butions from two di↵erent scales, soft and soft-collinear,
which can be factorized by introducing separate soft and
soft-collinear Wilson lines.

The subtraction performed in (16), in conjunction with
the use of the time-like Wilson line, cures the IR prob-
lem mentioned earlier, such that the anomalous dimen-
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where the dots stand for a contribution involving the
three-particle LCDA of the B meson.
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The subtracted convolution and the soft function S(⇤)
A

depend on the cuto↵ ⇤, and there is no choice for which
both objects depend only on their natural scales. Follow-
ing [12], we choose ⇤ = mb and hence � = 1 to eliminate
the second scale from the subtracted convolution, at the
expense of introducing the scale mb in the definition of
F in (17). The translation of F (µ,mb, w) to F (µ,⇤, w)
with a di↵erent choice of ⇤ can be obtained by solving
the evolution equation (19).
We are now ready to present our main result. The
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! µ�⌫̄µ decay amplitude including virtual QED cor-

rections can be written as
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where the two terms in the second line probe the two- and
three-particle Fock states of the B meson. After renor-
malizing the four-fermion operator in (1), the muon mass
and the parameter F in the MS scheme and performing
the integrations over x, we obtain at one-loop order
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In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B�

! `�⌫̄` (�).

The three-particle LCDAs of the B meson have been

studied in [40, 41]. Our function �3g(!,!g) is related to
the functions defined therein by
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The relevance of the B → B ∗ contribution
depends on the maximal allowed photon
energy.

Both channels are power-suppressed, but
by different mechanisms.

The scalar channel B → γs ℓν is statically
suppressed by the lepton mass.

The B → B ∗γ coupling grows with photon
energy as it is a derivative coupling

δ# =− e gB ∗

2mB
F̃µνV µνB ∗ Φ

†
B

The looser the cut on additional radiation, the more important the B ∗ contribution
becomes.

The contribution from the next higher excited state B → B1γ has only a mild effect.
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REAL PHOTON EMISSIONS

The Power of Effective Field Theories

Structure-dependent QED corrections below :ΛQCD

▸  contribution becomes relevant 
for  

▸ Contributions of higher excited states 
are power suppressed for  
(real photon emission) 

▸ The looser the cut on additional 
radiation, the more important the B* and 
higher contributions are

B → B*γ
Eγ ≳ (mB* − mB) ≈ 46 MeV

Eγ ≪ ΛQCD
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