NRQCD and Quarkonium Production

Geoffrey Bodwin (ANL)

Outline

- Key Ideas from Peter
	- **–** Heavy Quarkonium: A Multi-Scale Problem
	- **–** NRQCD
	- **–** Quarkonium Inclusive Decays in NRQCD
- Factorization of the Inclusive Cross Section
	- **–** The NRQCD Factorization Conjecture
	- **–** Modification of the LDMEs
	- **–** Ingredients in a Factorization Proof
	- **–** A Key Difficulty in Proving Factorization
- Peter's Secret Identity
- Phenomenology of Quarkonium Production
	- **–** SDCs for *S*-Wave Quarkonia at NLO in *α^s*
	- **–** Determinations of the Color-Octet LDMEs from Fits to Data
	- **–** *J/ψ* Cross Section
	- **–** *J/ψ* Polarization
	- **–** *η^c* Production at LHCb
	- **–** *J/ψ* Energy Fraction in a Jet
	- **–** *J/ψ* Production in Association with a *Z* or a *W*
	- **–** *J/ψ* Photoproduction at HERA
	- **–** Score Card
	- **–** Universality of TUM-Group LDMEs
- Summary
- Future Directions in Quarkonium Production

Key Ideas from Peter

Heavy Quarkonium: A Multi-Scale Problem

- Heavy quarkonium: a bound state of a heavy quark *Q* and heavy antiquark *Q*¯ (charmonium, bottomonium).
- There are three important scales in in a heavy quarkonium:
	- **–** *m*, the heavy-quark mass;
	- **–** *mv*, the typical heavy-quark momentum;
	- **–** *mv*² , the typical heavy-quark kinetic energy and binding energy.
- *v* is the typical heavy-quark velocity in the quarkonium CM frame.
	- $-v^2 \approx 0.3$ for charmonium.
	- $-v^2 \approx 0.1$ for bottomonium.
- In theoretical analyses, it is useful to separate the perturbative scale *m* from the lower, nonperturbative scales.
	- $-\alpha_s(m_c) \approx 0.25$ and $\alpha_s(m_b) \approx 0.18$
	- **–** Approximate symmetries (*e.g.* heavy-quark spin symmetry) are valid at the lower scales.
	- **–** Analytic calculations simplify when they involve only one scale at a time.
	- **–** Lattice calculations can encompass only a limited range of scales, and so become more tractable after scale separation.

NRQCD

- The effective field theory NRQCD provides a convenient way to separate the scale *m* from the scale *mv* and lower scales.
- Generalization of NRQED Caswell, Lepage [PLB 167 (1986) 437].
- A valid description of physics with momenta *p < [∼] mv*.
- Construct by integrating out the modes in the QCD path integral that have *p > [∼] ^m*.
- Leading terms in $p/m \sim v$ are just the Schrödinger action.

$$
\mathcal{L}_0 = \psi^{\dagger} \left(iD_t + \frac{\mathbf{D}^2}{2m} \right) \psi + \chi^{\dagger} \left(iD_t - \frac{\mathbf{D}^2}{2m} \right) \chi.
$$

$$
D_t = \partial_t + igA_0. \qquad \mathbf{D} = \mathbf{\partial} - ig\mathbf{A}.
$$

- **–** *ψ* is the two-component (Pauli) spinor that annihilates a *Q*.
- $-\chi$ is the two-component spinor that creates a \overline{Q} .

• To reproduce QCD completely, we would need an infinite number of interactions. For example, at next-to-leading order in v^2 we have

$$
\delta \mathcal{L}_{\text{bilinear}} = \frac{c_1}{8m^3} \left[\psi^{\dagger} (\mathbf{D}^2)^2 \psi - \chi^{\dagger} (\mathbf{D}^2)^2 \chi \right] \n+ \frac{c_2}{8m^2} \left[\psi^{\dagger} (\mathbf{D} \cdot g \mathbf{E} - g \mathbf{E} \cdot \mathbf{D}) \psi + \chi^{\dagger} (\mathbf{D} \cdot g \mathbf{E} - g \mathbf{E} \cdot \mathbf{D}) \chi \right] \n+ \frac{c_3}{8m^2} \left[\psi^{\dagger} (i \mathbf{D} \times g \mathbf{E} - g \mathbf{E} \times i \mathbf{D}) \cdot \boldsymbol{\sigma} \psi + \chi^{\dagger} (i \mathbf{D} \times g \mathbf{E} - g \mathbf{E} \times i \mathbf{D}) \cdot \boldsymbol{\sigma} \chi \right] \n+ \frac{c_4}{2m} \left[\psi^{\dagger} (g \mathbf{B} \cdot \boldsymbol{\sigma}) \psi - \chi^{\dagger} (g \mathbf{B} \cdot \boldsymbol{\sigma}) \chi \right].
$$

- In practice, work to a given precision in *v*.
- The *cⁱ* are called short-distance coefficients.
	- **–** They can be computed in perturbation theory by matching amplitudes in full QCD and NRQCD.
	- **–** The c_i contain the effects from momenta $p \gtrsim m$.
- Momenta in NRQCD are cut off at a scale Λ *∼ mv*.
	- $-\Lambda$ plays the rôle of a factorization scale between the hard and soft physics.

Quarkonium Inclusive Decays in NRQCD

(GTB, Braaten, Lepage [hep-ph/9407339])

Space-time Picture of Heavy-Quarkonium Annihilation

- A(C) and B(D) are within *∼* 1*/m* of each other.
- Emission of a gluon with energy *∼ m* puts heavy-quark propagator off shell by *∼ m*.

- A and C are within *∼* 1*/m* of each other.
	- **–** The squared amplitude is insensitive to momenta *< [∼] ^m* that run through the upper gluon.
	- **–** Therefore, the Fourier transform has support only for A and C within *∼* 1*/m* of each other.
- Soft final-state interactions could spoil this argument.
	- **–** But soft divergences cancel by the KLN thm. for inclusive processes.
- In NRQCD the annihilation is represented by local 4-fermion interactions.

• The finite size of the annihilation vertex is taken into account by including operators of higher order in *v*.

• The inclusive annihilation rate is given by the NRQCD factorization formula:

$$
\Gamma(H \rightarrow \text{light hadrons}) \; = \; \sum_n \frac{2 \; \text{Im} \; f_n}{m^{d_n - 4}} \; \langle H | \mathcal{O}_n | H \rangle.
$$

- The f_n are short-distance coefficients (SDCs).
	- **–** Determine the *fⁿ* by matching annihilation amplitudes between full QCD and NRQCD in perturbation theory.
	- **–** The *fⁿ* have an expansion in powers of *αs*.
- All of the nonperturbative physics is in the long-distance matrix elements (LDMEs) of the 4-fermion operators in the quarkonium state.
	- **–** Calculate on the lattice or determine from experiments.
	- **–** Universal—process independent.
- The matrix elements have a known scaling with *v*.
	- **–** Truncate the sum over *n* at the desired accuracy.
- The $Q\bar{Q}$ pair can annihilate in a color-octet or a color-singlet state.
	- **–** The color-singlet contribution alone is IR divergent for *P*-wave decays.
	- **–** The color-octet contribution cures the IR divergence.
- The color-singlet contributions at leading order in *v* are called the color-singlet model (CSM).
- NRQCD factorization for inclusive quarkonium decays is believed to be valid to all orders in *α^s* and *v*.

Factorization of the Inclusive Cross Section

- An incoming p and \bar{p} emit high-energy gluons that create a high- p_T QQ pair.
- The high- p_T $Q\bar{Q}$ pair evolves into a quarkonium H by emitting soft gluons.

- *A*(*C*) and *B*(*D*) are within *∼* 1*/m^Q* of each other.
- Kinematics implies the heavyquark propagators are off shell by $\sim m$.
- The points *A* and *C* are within $\sim 1/p_T$ of each other.
- The rate is insensitive to a change in the momentum through the upper energetic gluons if it is $\ll p_T$.
- The part of the diagram inside the box corresponds to an LDME.
- The remainder of the diagram is the SDC.

• The probability for a $Q\bar{Q}$ pair to evolve into a heavy quarkonium can be calculated as a vacuum-matrix element in NRQCD:

$$
\langle 0|\mathcal{O}_n^H|0\rangle = \langle 0|[\chi^\dagger\kappa_n\psi](0)\bigg(\sum_X|H+X\rangle\langle H+X|\bigg)[\psi^\dagger\kappa_n'\chi](0)|0\rangle.
$$

The *κn*'s are combinations of Pauli matrices and color matrices.

- This is the matrix element of a four-fermion operator, but with a projection onto an intermediate state of the quarkonium *H* plus anything.
- The production matrix elements are the crossed versions of quarkonium decay matrix elements.
	- **–** Only the color-singlet production and decay matrix elements are simply related.

The NRQCD Factorization Conjecture

(GTB, Braaten, Lepage [hep-ph/9407339])

• The inclusive cross section for producing a quarkonium at large p_T can be written as a sum of short-distance coefficients (SDCs) times NRQCD long-distance matrix elements (LDMEs).

$$
\sigma(H) = \sum_n F_n \langle 0 | \mathcal{O}_n^H | 0 \rangle.
$$

- The SDCs (*Fn*)
	- **–** Determined by matching full QCD to NRQCD.
	- **–** Essentially the process-dependent partonic cross sections to make a *QQ*¯ pair, convolved with the parton distributions.
	- **–** Have an expansion in powers of *αs*.
- The LDMEs ($\langle 0 | \mathcal{O}_n^H | 0 \rangle$) are supposed to be universal (process independent).
	- **–** That is what gives NRQCD factorization its predictive power.
- The LDMEs have a known scaling with *v*.
- The current phenomenology of J/ψ , $\psi(2S)$, and Y production uses LDMEs through relative order v^4 :

$$
\langle \mathcal{O}^H({}^3S_1^{[1]}) \rangle \quad (O(v^0)), \langle \mathcal{O}^H({}^1S_0^{[8]}) \rangle \quad (O(v^3)), \langle \mathcal{O}^H({}^3S_1^{[8]}) \rangle \quad (O(v^4)), \langle \mathcal{O}^H({}^3P_J^{[8]}) \rangle \quad (O(v^4)).
$$

Notation is ${}^{2S+1}L^{[c]}_J$ $J^{[c]}_J$, where c is the color multiplet.

- Calculations show that the ${}^3S_1^{[1]}$ $1^{[1]}$ contributions are negligible for J/ψ hadroproduction.
- Three color-octet LDMEs need to be determined phenomenologically for each *S*-wave quarkonium state.
- The $\langle {\cal O}^H({}^3P_J^{[8]}$ $\langle J^{[8]}_J\rangle \rangle$ $(J=0,1,2)$ are related by the heavy-quark spin symmetry.

Modification of the LDMEs

(Nayak, Qiu, Sterman [hep-ph/0501235])

- The color-octet LDMEs must be modified by the inclusion of Wilson (eikonal) lines to make them gauge invariant.
- The Wilson lines are path integrals of the gauge field.
- Run from the $Q\bar{Q}$ creation points to infinity.
- Essential at two-loop order to allow certain soft contributions to be absorbed into the NRQCD LDMEs.

Ingredients of a Factorization Proof

In the collision CM frame:

- Collinear gluons (Nayak, Qiu, Sterman [hep-ph/0509021])
	- **–** factor into parton distributions in the initial state,
	- **–** cancel in the final state,
	- **–** except for collinear gluons that are associated with the quarkonium jet, which factor into quarkonium fragmentation functions.
	- **–** Collinear divergences on heavy-quark lines regulated by *m*.
- Soft gluons that connect the quarkonium jet to the other hadrons in the production process factor and cancel. (Nayak, Qiu, Sterman [hep-ph/0509021])
	- $-$ Holds only through relative order $m^2/p_T^2.$ p_T is the quarkonium transverse momentum in the CM frame.
	- **–** Suggests that factorization holds only for *p^T ≫ m*.

A Key Difficulty in Proving Factorization

• How do we treat gluons with momenta of order *m^Q* in the quarkonium rest frame? (Nayak, Qiu, Sterman [hep-ph/0509021])

- If the orange gluon has momentum of order *mQ*, it can't be absorbed into the NRQCD LDME.
- But the orange gluon can have nonvanishing soft exchanges with the quarkonium constituents.
- The orange gluon produces a "minijet" in the fragmentation function.
- The orange gluon can be approximated by a Wilson line.
	- **–** It could then correspond to the Wilson line in the LDME.
	- **–** But only if the LDME does not depend on the direction of the Wilson line, which is given by the direction of the gluon.
	- **–** If the LDME depends on the direction of the Wilson line, then the universality of the LDME is spoiled.

NRQCD and Quarkonium Production and Cuarkonium Production and Cuarkonium C. Bodwin (ANL)

- Through two loops, a "miracle" happens: The dependence on the direction of the Wilson line cancels.
	- **–** Nayak, Qiu, Sterman (hep-ph/0501235, hep-ph/0509021, hep-ph/0608088): First established the two-loop result in a light-front calculation.
	- **–** GTB, Chung, Ee, Kim (1910.05497): Confirmed using covariant methods.
	- **–** Zhang, Meng, Ma, Chao (2011.04905): Confirmed in gluon fragmentation into a $^3P_J^{[1,8]}\ Q\bar{Q}$ pair.
- No obvious generalization of this result to higher orders in *αs*.
- Violations of factorization could first appear in N³LO calculations of the LDMEs.
	- **–** But would be parametrically suppressed only by *αs*(*m*) relative to LO.
- An all-orders proof (or disproof) of the universality of the LDMEs is the essential theoretical problem in quarkonium production.

Peter's Secret Identity

• Peter has always sought out new adventures (*e.g.* Grand Canyon hikes).

- After the initial NRQCD work, Raiders of the Lost Arc appeared.
- Peter started talking about bringing a bullwhip to lectures.
- But Peter never revealed his secret identity. . .

• As Manny the Shark and Alligator wrestler!

Phenomenology of Quarkonium Production

- Will focus on inclusive J/ψ production
- Interesting theoretical and experimental work that I will not discuss:
	- $-\psi(2S)$, χ_c production and polarization
	- **–** Exclusive charmonium production
	- **–** Diffractive charmonium production
	- **–** Double charmonium production
	- **–** Bottomonium production and polarization

SDCs for *S*-Wave Quarkonia at NLO in *α^s*

- Hamburg Group: Butenschön, Kniehl
	- **–** *J/ψ* hadroproduction cross sections and polarizations
	- $-\eta_c$ and $\psi(2S)$ hadroproduction cross sections
	- **–** Cross sections for *J/ψ* production in *ep* (photoproduction) and *γγ* collisions
	- **–** Cross sections for *J/ψ* production in association with a *W* or *Z* boson
- PKU Group: Chao, Ma, Shao, Wang, Zhang *et al.*
	- **–** *J/ψ* and *ψ*(2*S*) hadroproduction cross sections and polarizations
	- **–** *η^c* and Υ(*nS*) hadroproduction cross sections
- **IHEP Group: Gong, Wan, Wang**
	- J/ψ , $\psi(2S)$, and $\Upsilon(nS)$ hadroproduction cross sections and polarizations
- These three groups agree on the hadroproduction-cross section and polarization SDCs.
- ANL Group (GTB, Chung, Kim, Lee) and ANL-PKU Group (GTB, Chao, Chung, Kim, Lee, Ma)
	- **–** Resummed leading logs of *p* 2 $_T^2/m_c^2$ to all orders for charmonium cross sections and polarizations, using PKU SDCs.

Determinations of the Color-Octet LDMEs from Fits to Data

- Representative, but not all inclusive.
- The color-singlet LDMEs
	- **–** Can be determined from decays to leptons/photons.
	- **–** Give negligible contributions, except in the case of the *η^c* cross section.
- The Hamburg Group (1105.0920)
	- **–** Made use of their extensive NLO calculations of SDCs.
	- **–** Determined all 3 color-octet LDMEs by making a global fit to cross sections with $p_T > 3$ GeV from the Tevatron, LHC, RHIC, HERA, LEP II, KEKB.
	- **–** Uncorrected for feeddown.
- The ANL Group (1403.3612)
	- **–** Used their SDCs that include resummation of leading logs of *p* 2 $\frac{2}{T}/m_c^2$
	- **–** Fit the CDF and CMS prompt *J/ψ* cross sections for *p^T >* 10 GeV.
- The ANL-PKU Group (1509.07904)
	- **–** Used their SDCs that include resummation of leading logs of *p* 2 T^2/m_c^2 .
	- \blacktriangleright Fit the CDF and CMS J/ψ , $\psi(2S)$, and χ_{cJ} cross sections for $p_T > 10$ GeV.
	- **–** Included NLO feeddown contributions from *ψ*(2*S*) and *χcJ* in their fit.
- The PKU Group (1009.3655, 1012.1030)
	- **–** Fit the CDF *J/ψ* cross sections for *p^T >* 7 GeV.
	- **–** Determined only 2 linear combinations of LDMEs unambiguously.
	- **–** Resolved the ambiguity by using the LHCb *η^c* cross section plus the heavyquark spin symmetry.
	- **–** Experimental data were used to subtract feeddown contributions.
- The TUM Group (Brambilla, Chung, Vairo, Wang [2210.17345])
	- **–** Used relations for the LDMEs from Potential NRQCD (pNRQCD) to reduce the number of free parameters (corrections of order v^2 , $1/N_c^2$):

$$
\langle \mathcal{O}^V(^{3}S_{1}^{[1]}) \rangle = \frac{3N_c}{2\pi} |R_V^{(0)}(0)|^2,
$$

$$
\langle \mathcal{O}^V(^{3}P_{J}^{[8]}) \rangle = \frac{2J + 1}{18N_c} \mathcal{E}_{00} \frac{3 |R_V^{(0)}(0)|^2}{4\pi},
$$

$$
\langle \mathcal{O}^V(^{1}S_{0}^{[8]}) \rangle = \frac{1}{6N_c m^2} \frac{3 |R_V(0)|^2}{4\pi} c_F^2(m;\Lambda) \mathcal{B}_{00}(\Lambda),
$$

$$
\langle \mathcal{O}^V(^{3}S_{1}^{[8]}) \rangle(\Lambda) = \frac{1}{2N_c m^2} \frac{3 |R_V^{(0)}(0)|^2}{4\pi} \mathcal{E}_{10;10}(\Lambda),
$$

 $R_V^{(0)}$ $V^{(0)}(0)$ is the wave function at the origin

E and *B* are chromoelectric and chromomagnetic gluonic correlators. *c^F* is the SDC of the spin-flip term in the NRQCD action.

- **–** Wavefunctions at the origin from the decays to *e* +*e −*.
- **–** Gluon correlators from fits to the CMS *J/ψ* and *ψ*(2*S*) and the ATLAS Υ(2*S*) and $\Upsilon(3S)$ cross sections, taking $p_T/(2m_Q) > 3$ and $p_T/(2m_Q) > 5$.
- **–** Corrected for feeddown using experimental data.

• The groups extract very different color-octet LDMEs.

Units of 10*−*² GeV³ .

- Transverse polarization tends to cancel if $\langle {\cal O}^V({}^3S_1^{[8]})$ $\langle {\cal O}^V({}^3P_0^{[8]}) \rangle$ and $\langle {\cal O}^V({}^3P_0^{[8]})$ $\langle 0^{[8]} \rangle \rangle / m_c^2$ have the same signs.
- True for all but the Hamburg Group.

J/ψ Cross Section

• The Hamburg-Group predictions agree with the data, within uncertainties, but are tensions in the shapes that are most apparent at high *p^T* .

• The ANL-PKU-Group prediction agrees with the CMS data over a large p_T range:

- There is some tension with the CDF data (hep-ex/0412071).
- The ANL-Group fit is similar.

• The PKU Group predictions agree with the CMS and LHCb data.

- Slight tension with the LHCb data.
- Prediction does not agree with data at low p_T , where NRQCD factorization is expected to fail.

• The TUM Group predictions agree with the CMS data.

• Heights of Vertical bands determined by differences in fits with $p_T/(2m_c) > 3$ and $p_T/(2m_c) > 5$.

J/ψ Polarization

- At high p_T , the ${}^3S_1^{[8]}$ and ${}^3P_J^{[8]}$ $J^{[\circ]}$ channels are transversely polarized.
- The ${}^3P_J^{[8]}$ $J^{[8]}$ and ${}^3S_1^{[8]}$ $1^{\text{[0]}}$ channels tend to cancel if the LDMEs have the same signs.
- The Hamburg-Group predictions (1201.3862) (yellow and red bands) disagree with the CDF and CMS data.
- \bullet $^3S_1^{[8]}$ and $^3P_J^{[8]}$ $J^{|\circlearrowright}$ channels add.

• ANL-PKU-Group prediction (1509.07904) (blue band) agrees with the CMS data.

- \bullet $^3S_1^{[8]}$ and $^3P_J^{[8]}$ $J^{[0]}$ channels largely cancel.
- The unpolarized ¹S^[8] $_0^{\rm (O)}$ channel dominates.
- The ANL-Group fit is similar.

• The PKU-Group predictions agree, with some tension, with the CMS, LHCB, and ALICE data.

NRQCD and Quarkonium Production and Cuarkonium Production and Cuarter and Cuar

• The TUM predictions agree, with some tension, with the CMS data.

 \bullet $^3S_1^{[8]}$ and $^3P_J^{[8]}$ $J^{|\circ|}$ channels largely cancel.

η_c Production at LHCb (1409.3612)

- The η_c LDMEs are fixed by using the heavy-quark spin symmetry of NRQCD to relate them to the *J/ψ* LDMEs.
- \cdot Good up to corrections of relative order v^2 .
- The color-singlet contribution alone accounts for the measured cross section.
- The Hamburg-Group prediction overshoots the data by a factor of about 6.

• The ANL-Group prediction is even worse.

• Not surprisingly, the PKU Group prediction, which used the η_c cross section as a constraint, agrees fairly well with the LHCb data.

• The TUM-Group predictions are in agreement with the data for the LDMEs in which the cut $p_T/(2m_c) > 5$ was taken.

• A check of the LHCb result by a different group would be useful.

J/ψ Energy Fraction in a Jet

• Bain, Dai, Makris, Leibovich, Mehen (1702.05525) used NRQCD factorization to compute

 $z(J/\psi)$, the energy of the J/ψ divided by the energy of the accompanying jet.

- A measure of the gluon radiation that is expected to accompany the quarkonium in color-octet production.
	- **–** Gets to the heart of the color-octet production mechanism.
- Computed using a corrected version of Pythia (GFIP) and the fragmenting jet function (FJF).
- Compared with the LHCb (1701.05116) data with predictions from different LDME sets.

- BK is the Hamburg Group.
- Chao, Ma, Shao, Wang, Zhang, (Chao *et al.*) LDMEs are from a polarizationconstrained fit (1201.2675).
- Bodwin *et al.* is the ANL-Group.
- The Chao *et al.* and ANL-Group LDMEs give reasonable fits.

• CMS (1910.01686) measured events in three *z* bins as a function of *E*jet.

- $\Xi(E_{\rm jet}; z)$ is number of events in a z bin divided by number of events with $0.3 \leq z \leq 0.8$.
- z bins at $z = 0.425$, 0.525, 0.635.
- Only the BCKL (ANL-Group) LDMEs give a good fit.

J/ψ Production in Association with a *Z* or a *W*

- NLO calculation from Butenschön and Kniehl (2207.09366).
- The calculation is expected to be more reliable in the *Z* case because some of the *cc*¯ channels open in the *W* case only at NNLO.
- Comparison with ATLAS data.
- All of the predictions undershoot the data.
- Double-parton scattering might account for some of the discrepancy.

- $J/\psi + Z$ production
- Butenschoen *et al.* is the Hamburg Group.

 10^2

- Bodwin *et al.* is the ANL-PKU Group.
- Brambilla *et al.* is the TUM Group $(p_T/(2m_c) > 3)$.
- The TUM-Group prediction undershoots the data by only a about a factor of 3.

J/ψ Photoproduction at HERA

• The Hamburg Group used the

HERA H1 photoproduction data (hep-ex/0205064, hep-ex/0510016) to fit their LDMEs.

- Some tension in the fit.
- The H1 data lie at *p^T < [∼]* ⁸ GeV.
- Is NRQCD factorization valid at such low values of p_T ?

• The ANL-Group (1504.06019) resummation of logs of p_T^2 $\frac{2}{T}/m_c^2$ (<mark>blue</mark> curve) does not resolve the discrepancy.

- The p_T of the highest measured point is only about 8 GeV.
- But theory and data are not trending toward each other as p_T increases.

• The Chao *et al.* polarization-constrained LDMEs are incompatible with the H1 photoproduction data.

Score Card

- No single LDME set describes all of the data.
- The TUM-Group LDMEs from the higher p_T cut look very promising.
- It would be good to have calculations of *J/ψ* jet shape and photoproduction (*ep*) of *J/ψ* for the TUM-Group LDMEs.

Universality of TUM-Group LDMEs

- The TUM Group uses just three the gluon correlators to
	- $-$ Fit the J/ψ , $\psi(2S)$, and $\Upsilon(nS)$ cross sections,
	- **–** Predict their polarizations.
- Involves evolving the correlators to the scales *m^c* and *mb*.

Cross Sections

- $\Upsilon(1S)$ cross section is a prediction, not a fit.
- Remarkable agreement with the data.

Polarizations

Summary

- Peter's ideas on heavy quarkonia have spawned a rich field of theoretical and experimental work. (*[≈]* ³⁰⁰⁰ citations on iNSPIRE)
- High-quality, high-*p^T* measurements from the LHC have enabled meaningful comparisons with theory:
	- **–** *J/ψ* cross sections and polarization,
	- **–** *ψ*(2*S*) cross sections and polarization,
	- **–** *χcJ* cross sections and polarization,
	- **–** *J/ψ* jet energy fraction,
	- **–** *J/ψ* production in association with a *W* or *Z*,
	- **–** Υ(*nS*) cross sections and polarizations.
- The theory of quarkonium production has seen a number of experimental confirmations, but no single LDME set describes all of the data.

Future Directions

- A proof (or disproof) of the universality of the LDMEs is urgently needed.
- Lattice measurements of the gluon correlators are in progress (TUM Group).
	- **–** First determination of the LDMEs directly from QCD.
- \cdot Tests of NRQCD in $b\bar{b}$ systems should be carried out.
	- **–** The *v* expansion should converge faster.
	- **–** Precision measurements of *χ^b* cross sections and polarizations are needed.
	- **–** Extensions Υ(*nS*) cross sections and polarizations to higher *p^T* and higher precision are needed.
- Resummation of logs of p_T^2 T_T^2/m^2 should be incorporated into all calculations.
- A cure for the problem of negative cross sections at large p_T ($\gtrsim 140$ GeV) is needed needed.
	- **–** Chen *et al.* (2304.04552): Soft-gluon factorization (shape functions).
	- **–** Chung, Kim, Lee (2408.04255): Resummation of threshold logs.
- NNLO calculation of the SDCs may be feasible with modern amplitude technology.

NRQCD and Quarkonium Production 54 G. Bodwin (ANL)

- A check of the LHCB $η_c$ cross section is needed.
- Jet energy fractions should be calculated for all of the LDME sets.
- Energy correlators (Chen *et al.* [2405.10056]) are another promising avenue of investigation.
- Higher-order calculations of gluon fragmentation to quarkonium could improve precision.
	- $-{}^{1}S_{0}^{[1,8]}$ $0^{(1, 0)}$: Artoisenet and Braaten (1810.02448)
	- $-{}^{1}S_{0}^{[1,8]}$ $0^{(1, 0)}$: Feng, Jia _(1810.04138)
	- $-{}^{3}P_{J}^{[1,8]}$ *J* : Zhang, Meng, Ma, Chao (2011.04905)

Backup Slides

Constraints from $e^+e^- \to J/\psi + X_{\text{non}-c\bar{c}}$ at the *B* factories.

- Zhang, Ma, Wang, Chao (0812.5106, 0911.2166) computed the cross section for $e^+e^-\to c\bar{c}g$ through the ${}^1S_0^{[8]}$ and ${}^3P_0^{[8]}$ $_0^{\text{log}}$ channels at NLO.
- Comparison with the Belle (0901.2775) measurement of $\sigma(e^+e^-\to J/\psi+X_{\rm non-}c\bar{c})$ leads to a bound on the color-octet LDMEs:

$$
M_{4.0} = \langle \mathcal{O}^{J/\psi} ({}^{1}S_{0}^{[8]}) \rangle + 4.0 \langle \mathcal{O}^{J/\psi} ({}^{3}P_{0}^{[8]}) < (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^{3}
$$

- Bound comes from neglecting the color-singlet contribution, which saturates the measured cross section by itself.
- Bound is in conflict with the LDMEs extracted from the hadron-collider data, except for the Hamburg LDMEs:

$$
M_{3.9}^{\text{PKU}} = (7.4 \pm 1.9) \times 10^{-2} \text{ GeV}^3
$$

\n
$$
M_{3.9}^{\text{Hamburg}} = (2.17 \pm 0.56 \times 10^{-2} \text{ GeV}^3
$$

\n
$$
M_{3.9}^{\text{Hamburg}} = (9.78 \pm 1.52) \times 10^{-2} \text{ GeV}^3
$$

\n
$$
M_{3.9}^{\text{MML-PKU}} = (9.78 \pm 1.52) \times 10^{-2} \text{ GeV}^3
$$

• But, the Belle (0901.2775) measurement

$$
\sigma(e^+e^- \to J/\psi + X) = (1.17 \pm 0.02 \pm 0.07)
$$
 pb

is more than a factor 2 smaller than the BaBar (hep-ex/0106044) measurement

$$
\sigma(e^+e^- \to J/\psi + X) = (2.52 \pm 0.21 \pm 0.21)
$$
 pb.

- Most of the data are at *p^T < [∼]* ³ GeV.
- Is p_T too small for NRQCD factorization to be valid?

*χc*¹ and *χc*² Production

• Ma, Wang, Chao (1002.3987) fit the ratio $d\sigma_{\chi_{c1}}/d\sigma_{\chi_{c2}}$:

- Used CDF (hep-ex/0703028) data.
- Fit, plus a potential-model value of $\langle ^3P_J^{[1]}$ *J ⟩* (Eichten, Quigg (PRD 52, 1726)), allowed them to fix $\bra{^3S_1^{[8]}}$ $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$.
- That allowed them to predict the cross section:

• In good agreement with the CDF data.

• The prediction of Ma, Wang, Chao also agrees with the CMS data (1210.0875):

• The dashed green and blue lines are the shifts in the ratio for extreme values of the *χcJ* polarizations.

• The ANL-PKU group fit the ATLAS (1404.7035) data:

- The fitted value of the color-singlet LDME: $\langle \mathcal{O}^{\chi c1} (^3P_J^{[1]}]$ $\langle J_1^{[1]} \rangle$ $>$ = (7.9±2.4)×10^{−2} GeV⁵.
- Potential-model value [Eichten, Quigg (PRD 52, 1726)]: $\langle \mathcal{O}^{\chi c1} (^3P_J^{[1]}]$ $\langle J^{[1]} \rangle \rangle = 10.7 \times 10^{-2} \text{ GeV}^5.$
- Value from two-photon decays of the *χc*¹ and *χc*² [Chung, Lee, Yu (0808.1625)]: $\langle \mathcal{O}^{\chi c1} (^3P_J^{[1]}]$ $\langle J^{[1]} \rangle \rangle = 6.0^{+4.3}_{-2.9} \times 10^{-2}$ GeV⁵.
- Good agreement among LDMEs from different physical processes strongly suggests that NRQCD factorization is more than just curve fitting.

*χc*¹ and *χc*² Polarizations

• The muon angular distribution in $\chi_{cJ}\to J/\psi\to\mu^+\mu^-$ is a proxy for the χ_{cJ} polarization.

- In order to reduce systematics, CMS measures the ratio of angular distributions.
- The NRQCD curves [Faccioli, Lourenço, Araújo, Seixas, Krätschmer, Knünz (1802.01106)] use the SDCs from the PKU group.

• Faccioli et al. used the CMS measurement of $d\sigma_{\chi_{c2}}/d\sigma_{\chi{c1}}$ to fix the ratio of NRQCD LDMEs and used the PKU-group SDCs to predict the polarizations.

- They determined the χ_{c2} polarization (purple "data" points) by using
	- $-$ the prediction for the χ_{c1} polarization,
	- **–** the measured ratio of angular distributions.
- "Out of the box" prediction of NRQCD works well.

Color-Singlet Model (CSM)

- The CSM is theoretically inconsistent.
	- **–** Uncanceled infrared divergences at leading order in *v* for production of *P*wave states and at higher orders in *v* for other states.
- The CSM predictions in NLO fall well below the observed cross sections.

- The NNLO* calculation is an estimate based on real-emission contributions only.
- When the virtual contributions are added, the true NNLO contribution will likely be smaller.

• The CSM predictions in NLO do not describe the polarization data.

Color-Evaporation Model (CEM)

- The Color Evaporation Model (CEM) says that rate to produce a quarkonium is proportional to the rate to produce a $Q\bar{Q}$ pair, regardless of the quantum numbers of the $Q\bar{Q}$ pair or the quarkonium.
	- **–** Not plausible in quantum field theory: Different *QQ*¯ states will have different overlaps with a given quarkonium state.
- The CEM requires an *ad hoc* modification, k_T smearing, in order to describe the data reasonably well.
- Nevertheless, because of its simplicity, the CEM is a useful way to describe production when a fundamental theory is not necessary, *e.g.* in studies of production in media.

k^T -Factorization Approach

- The k_T -Factorization Approach could, in principle, yield valid results. But...
- it relies on k_T -dependent parton distributions, which are poorly determined;
- calculations are usually carried out within the CSM;
- calculations are usually carried out only in LO.

J/ψ Production in *γγ* Scattering at LEP II

- The DELPHI (2003) data are slightly incompatible with the prediction of the Butenschön and Kniehl (2011) global fit.
- The error bars are large, especially at high p_T .
- Factorization may not hold at low values of *p^T* .

- The prediction from the Butenschön and Kniehl (2011) global fit is in agreement with the ALICE (2012) data.
- But the theory is for direct production, while the ALICE data includes production in *B*-meson decays and feeddown from χ_{cJ} states and the $\psi(2S)$.

• The Butenschön and Kniehl (2011) global fit can also be used to predict the polarization in inelastic *J/ψ* photoproduction at HERA.

• The data are roughly compatible with the theory at large p_T , but the error bars are large.

NRQCD and Quarkonium Production and Cuarkonium Production and Cuarter of C. Bodwin (ANL)

NRQCD and Quarkonium Production and Cuarkonium Production and Cuarter and Cuar