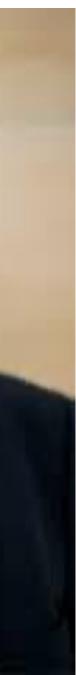
Exotic Hidden-Heavy Hadrons

and Where to Find Them **Eric Braaten Ohio State University**

Braaten & Bruschini, arXiv:2409.00802

Peter Lepage

Effective field theories for Heavy Quarkonium


Integrate out scale $m_0 \implies$ NonRelativistic QCD (NRQCD)

Caswell & Lepage 1985

Integrate out scale $m_0 v \implies$ heavy quark and antiquark interact through potentials (Lepage, unpublished)

Effective field theory for <u>Heavy Quarkonium</u> Integrate out scale $m_0 v \implies$ potential NRQCD (pNRQCD)

- Effective field theory for **Double-Heavy Hadrons** and Hidden-Heavy Hadrons
- Born-Oppenheimer Effective Field Theory (BOEFT) Berwein, Brambilla, Tarrus Castella & Vairo 2015 Oncala & Soto 2017 Brambilla, Krein, Tarrus Castella & Vairo 2017 Soto & Tarrus Castella 2020 Berwein, Brambilla, Mohapatra & Vairo 2024

- Brambilla, Pineda, Soto & Vairo 2000

- discovery of $X_c = \chi_{c1}(3872)$ Belle collaboration September 2003
- hidden-charm tetraquark meson ($c\bar{c}q\bar{q}$)

counting as of June 2023 Lebed 2023

- 44 *ccc* tetraquark mesons
 - 5 *cc* pentaquark baryons
 - 5 *bb* tetraquark mesons
 - 4 ccccc tetraquark mesons

Challenge: understand Exotic Hidden-Heavy Hadrons based on QCD No solution to the problem for over 20 years!

Exotic Hidden-Heavy Hadrons

Molecular models: constituents are color-singlet heavy hadrons natural explanation for why many Exotic Hidden-Heavy Hadrons

Models with colored constituents: quarks, gluons, diquarks, ... explosion in predicted but unobserved states

Constituent models can postdict most observed states no compelling pattern

Born-Oppenheimer Approximation for QCD

- have masses near thresholds for pairs of heavy hadrons

- tenuous connections to fundamental theory QCD

framework for Exotic Hidden-Heavy Hadrons firmly based on fundamental theory

heavy quarks: charm, bottom Hidden-Heavy Hadron includes heavy quark and antiquark plus light quarks, antiquarks, and gluons

Step 1 use Lattice QCD to calculate Born-Oppenheimer potentials: discrete energy levels of QCD in the presence of static 3 and 3^{*} color sources separated by distance r

Step 2 solve Schrödinger equation for heavy quark and antiquark in Born-Oppenheimer potentials

behavior at small r and large r determined by simpler problem: **QCD** with a single static color source

Born-Oppenheimer approximation for QCD Juge, Kuti & Morningstar 1999

QCD with single static color source

symmetries: rotational, parity, charge conjugation \implies discrete energy levels labeled by J^{PC}

3 or **3*** source:

discrete energy levels are called "static hadrons" spectrum can be calculated using lattice QCD spectrum can also be obtained by extrapolating charm hadrons and bottom hadrons to infinite quark mass

8 source:

discrete energy levels are called "adjoint hadrons" SU(3)-flavor singlets are also called "gluelumps" spectrum can be calculated using lattice QCD gluelump spectrum in SU(3) gauge theory: Foster & Michael 1999

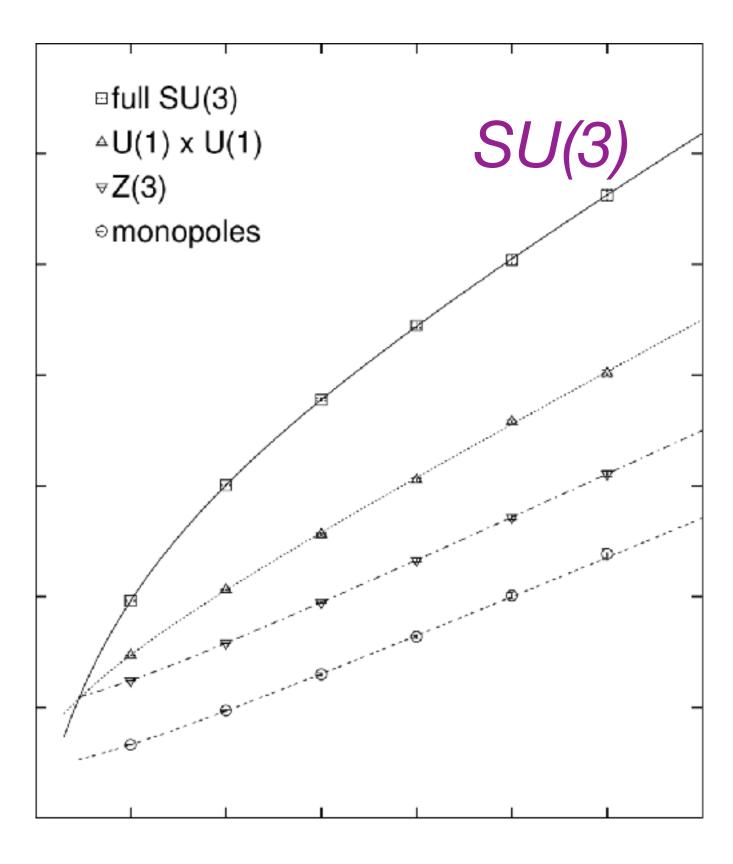
Herr, Schlosser & Wagner 2023 gluelump spectrum in QCD with 2 light flavors: Marsh & Lewis 2014 same as spectrum for gluino-hadrons that contain long-lived heavy gluino

QCD with two static color sources

3 and 3* sources separated by distance r discrete energy levels are "Born-Oppenheimer potentials" B-O potentials can be calculated using lattice QCD

<u>symmetries</u>	q
cylindrical	λ
$P \times C$	C
reflection R	R

- traditional Born-Oppenheimer quantum numbers from atomic physics: Λ_n^{ϵ} • $\Lambda = \Sigma, \Pi, \Delta, \dots$ for $|\lambda| = 0, 1, 2, \dots$ for CP = +1, -1• $\eta = g, u$ for R = +1, -1 (only needed for $\Lambda = \Sigma$) • $\epsilon = +, -$

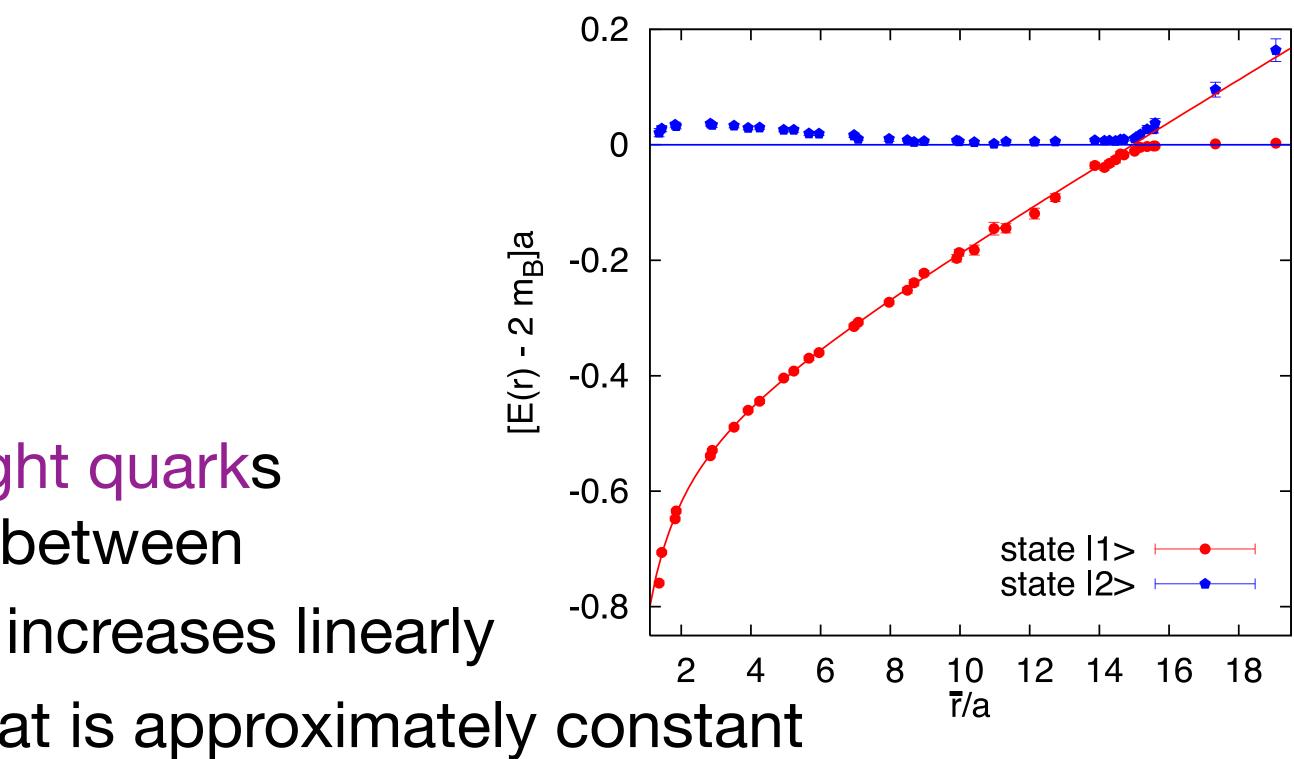

- uantum numbers
- $= 0, \pm 1, \pm 2, \dots$ CP = +1, -1R = +1, -1

Stack 1984

first calculation of ground-state (quarkonium) B-O potential using pure SU(3) Lattice gauge theory

- Σ_{ϱ}^{+} potential increases linearly at large r
- \implies gluon flux tube connecting 3 and 3* sources
- Σ_{q}^{+} potential attractive color-Coulomb potential at small r
- \implies perturbative QCD

What happens in QCD at large r? string breaking: two static mesons bound to 3 and 3* sources ! \implies ground-state Σ_g^+ potential must approach constant

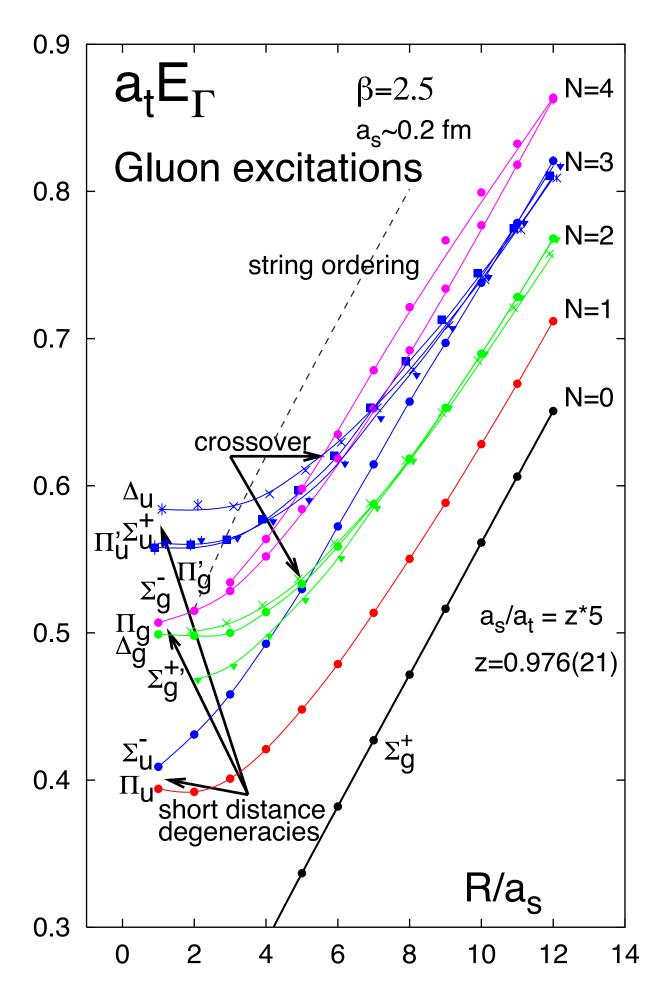


- = 2 × (energy of ground-state static meson)

Bali et al. 1995

calculation of first two Σ_g^+ potentials using Lattice QCD with 2 flavors of light quarks narrow avoided crossing near 1.2 fm between Σ_{ϱ}^{+} quarkonium potential that increases linearly static-meson-pair potential that is approximately constant

In hindsight static-hadron-pair potential at large r for every pair of static hadrons !


what happens to them at small r?

Juge, Kuti, and Morningstar 1999, 2002 excited B-O potentials in pure SU(3) Lattice gauge theory $\Pi_u, \Sigma_u^-, \Sigma_g^+, \dots$ potentials: increase linearly at large r \implies excited gluon flux tube connecting 3 and 3* sources

pNRQCD: Brambilla, Pineda, Soto & Vairo 1999 excited B-O potentials at small r: repulsive color-Coulomb potentials offset by gluelump energy

In hindsight

adjoint-hadron potential at small r for every adjoint hadron ! (repulsive color-Coulomb potential offset by adjoint-hadron energy) what happens to them at large r?

11

Discovery of hidden-heavy tetraquark mesons with electric charge $Z_{b}^{+} = T_{b\bar{b}1}(10610)^{+}, Z_{b}^{+'} = T_{b\bar{b}1}(10650)^{+}$ Belle collaboration 2011 $Z_c^+ = T_{c\bar{c}1}(3900)^+$

Braaten, Langmack & Smith 2014 hidden-heavy tetraquark mesons with electric charge are bound states in isospin-1 B-O potentials

Assumption:

as B-O potentials for pure SU(3) gauge theory • repulsive color-Coulomb potentials at small r RIGHT! increasing linearly at large r WRONG!

isospin-1 B-O potentials have same qualitative behavior but offset by isospin-1 adjoint-meson energy instead of gluelump energy

BESIII, Belle collaborations 2013

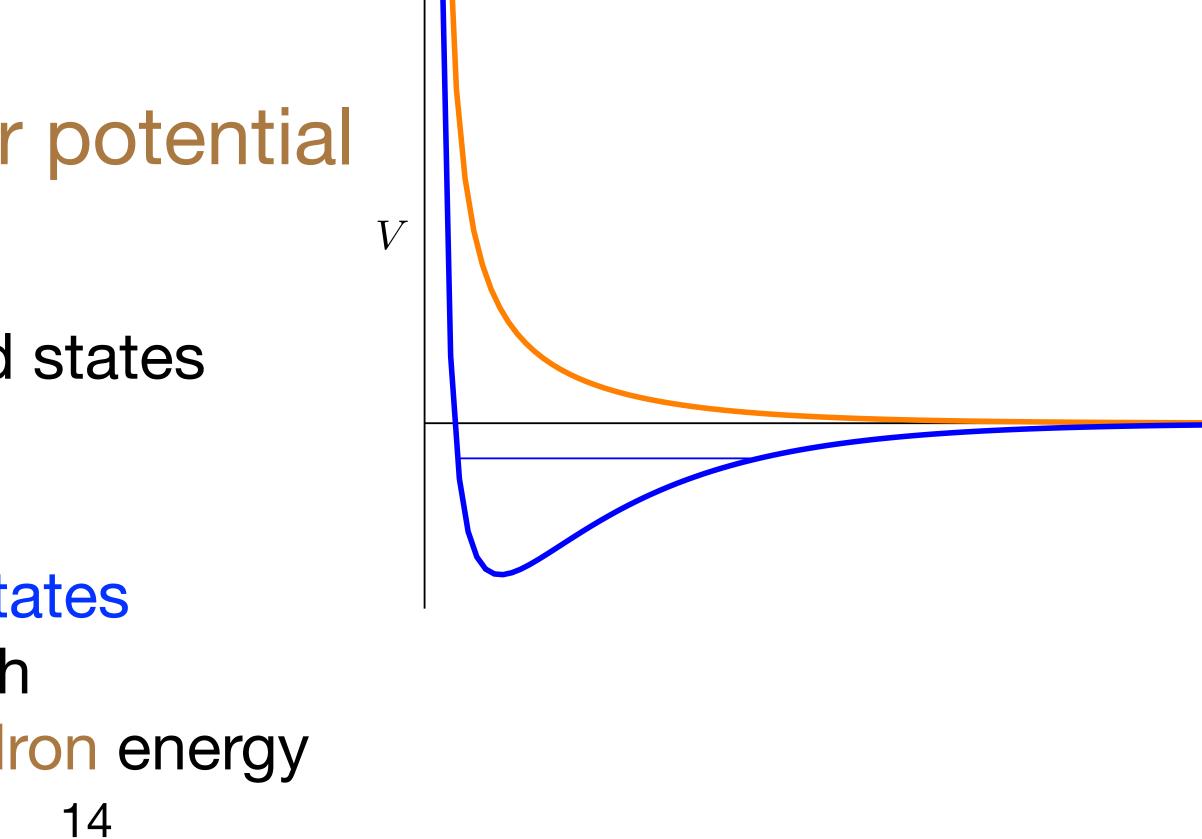
Born-Oppenheimer Potentials for QCD

Born-Oppenheimer potentials

- behavior at small r and large r determined by QCD with single color source adjoint-hadron potentials at small r, but what happens at large r ? • static-hadron-pair potentials at large r, but what happens at small r?
- Spectrum of QCD in the presence of color sources is smooth function of r ! \implies adjoint-hadron potentials at small r
- must connect smoothly to static-hadron-pair potentials at large r Berwein, Brambilla, Mohapatra & Vairo 2024 Braaten & Bruschini 2024
- Behavior of B-O potentials for QCD whose light-quark flavor is not SU(3) singlet • repulsive color-Coulomb potential at small r
- connects smoothly to constant potential at large r (not confining) completely different from pure SU(3) gauge theory

Born-Oppenheimer Potentials for QCD

Spectrum of QCD in the presence of color sources is smooth function of r ! \implies adjoint-hadron potential at small r must connect smoothly to static-hadron-pair potential at large r


adjoint-hadron potential can approach static-hadron-pair potential

either from above

in which case it cannot support bound states

or from below

in which case it may support bound states but only if the potential is deep enough its depth is determined by adjoint-hadron energy

Solution to Exotic Hidden-Heavy Hadron problem Braaten & Bruschini 2024

Exotic Hidden-Heavy Hadrons: bound states or resonances in Born-Oppenheimer potentials that are adjoint-hadron potentials at small r and approach static-hadron-pair potentials from below

explains why most Exotic Hidden-Heavy Hadrons

have mass near a heavy-hadron-pair threshold 15

Solution to Exotic Hidden-Heavy Hadron problem typical splittings between adjoint hadrons with 8 source

only those adjoint-hadron potentials associated with the lowest-energy adjoint hadrons will approach the static-hadron-pair potential from below

Exotic Hidden-Heavy Hadrons

are associated only with the lowest-energy adjoint hadrons ! avoids explosion in number of Exotic Hidden-Heavy Hadrons 16

- are larger than those between static hadrons with 3 source

Solution to Exotic Hidden-Heavy Hadron problem

- Amazing properties of some Exotic Hidden-Heavy Mesons are determined by energies of adjoint mesons
- $\chi_{c1}(3872)$ has mass within 100 keV of $D^{*0}\overline{D}^0$ threshold explained by fine tuning of energy of isospin-0 $J^{PC} = 1^{--}$ adjoint meson
- $T_{b\bar{b}1}(10610)^+$ has mass within 3 MeV of $B^*\bar{B}$ threshold $T_{b\bar{b}1}(10650)^+$ has mass within 3 MeV of $B^*\bar{B}^*$ threshold but it does not decay into $B^*\bar{B}$ or $B\bar{B}^*$ explained by fine tunings of energies of isospin-1 $J^{PC} = 1^{--}$ adjoint meson and isospin-1 $J^{PC} = 0^{-+}$ adjoint meson

- fine tunings of adjoint-meson energies can be verified by lattice QCD !

Solution to Exotic Hidden-Heavy Hadron problem Short-term goals $\chi_{c1}(3872)$ has $J^{PC} = 1^{++}$

Use diabatic Born-Oppenheimer approximation to predict their masses to within a few MeV

 $T_{b\bar{b}1}(10610)^0$, $T_{b\bar{b}1}(10650)^0$ have $J^{PC} = 1^{+-1}$ heavy-quark spin-symmetry partners have $J^{PC} = 0^{++}, 0^{++}, 1^{++}, 2^{++}$ Use diabatic Born-Oppenheimer approximation to predict their masses to within a few MeV

Longer-term goal: Use diabatic Born-Oppenheimer approximation

- heavy-quark spin-symmetry partners have $J^{PC} = 1^{+-}, 0^{++}, 2^{++}$

```
to predict the masses of all Exotic Hidden-Heavy Hadrons
```

Exotic Hidden-Heavy Hadrons:

bound state or resonances in Born-Oppenheimer potentials that are repulsive color-Coulomb potentials at small *r* and approach a static-meson-pair potential from below

Where to Find Them: near the heavy-hadron-pair thresholds associated with the <u>lowest-energy</u> adjoint hadrons Braaten & Bruschini, arXiv:2409.00802

Roberto Bruschini

