Cornell SRF (Collider) R&D *Current Activities and Future Opportunities*

Matthias Liepe

M. Liepe

Cornell SRF

Slide 1

Cornell Superconducting RF Group

National Lab Connections

- ILC cost reduction (high Q high field)
- N-doping development
- US Japan accelerator R&D
- Inspired Nb3Sn program at FNAL (former Cornell student Sam Posen)
- Future: collaboration on TW structures, collider SRF R&D, quantum materials...
- US Japan accelerator R&D
- N-doping development
- Inspired Nb3Sn program at JLab (former Cornell student Grigory Eremeev)
- First N-doped cavity in a cryomodule (Dan Gonnella, now SRF group leader at SLAC)
- Discovered importance of minimizing trapped magnetic flux in N-doped cavities
- First high-performance (electropolished and doped) 500 MHz cavity for storage rings

M. Liepe

Cornell SRF

International Lab Connections

M. Liepe

Cornell SRF

Slide 4

Cornell Breakthrough: Nb₃Sn SRF

- Funded and enabled by the DOE GARD Program (DE-SC0008431) -

First-ever functional alternative-material (Nb₃Sn) SRF cavities that outperform traditional niobium cavities!

M. Liepe

S. Posen et al, Applied Physics Letters 106 and Phys. Rev. ST Accel. Beams 15

Cornell Breakthrough: Robust, turn-key SRF technology, e.g., for industrial, medical, security applications

First demonstration of a Nb3Sn cavity operated at 10 MV/m with conduction cooling from a commercial cryocooler!

U.S. DOE award DE-SC0021038 "Next Steps in the Development of Turn-Key SRF Technology"

M. Liepe

N A Stilin et al 2023 Eng. Res. Express 5 025078 DOI 10.1088/2631-8695/acdd51

Opportunity: Boosting Energy Efficiency (Q₀)

M. Liepe

Cornell SRF

Slide 7

Opportunity: Boosting Energy Efficiency

R&D directions:

- Improved Nb treatments
- Passivating surface layers to prevent formation of lossy oxide
- Improve Nb₃Sn coatings and new growth methods (electroplating, CVD)
- Explore potential of Nb-Zr alloys and metal doping (new ARDAP award)

Z. Sun et al., SUST (2023); Z. Sun et al., Adv. Electron. Mater, T. Oseroff et al., arXiv:2305.12035

Opportunity: Higher Energy Gain SRF

	Niobium	Nb₃Sn theory	Nb₃Sn reached to date
Superheating field	220 mT	420 mT	-
Corresp. max. E _{acc}	55 MV/m	100 MV/m	24 MV/m
		a -6 -4 -2 g	1.0 0.8 0.6 0.4 0.2 0.0 5 lowers vortex

entry field (for $\xi \ll \lambda Nb_3Sn!$)

	Niobium	Nb-Zr
Critical Temperature T _c	9.2 K	13 - 16 K
Predicted superheating field	220 mT	>300 mT ?
Corresponding max. E _{acc}	55 MV/m	>75 MV/m?

R&D directions:

- Improve Nb₃Sn coating methods for increased quench fields
- Explore potential of Nb-Zr alloys (new ARDAP award)
- Traveling wave structures (collab. with FNAL)

Nb-Zr alloy Z. Sun et al., Adv. Electron. Mater

M. Liepe

Potential Cornell SRF Contributions to ITN Work Packages

WP-prime 1: Cavity Industrial-Production Readiness

Goals of the workpackage

Parameters	Unit	Design	
Baseline: Cavity gradient, E, at Q value (Q ₀)	MV/m	35 at Q ≥0.8 E10	
(Cost-Reduction R&D goal: E, at Q value)		(38.5 at $Q \ge 1.6E10$)	
Cavity production yield	%	90	

List of items:

Priority	Items	Y1	Y2	Y3	Y4
Α	1-cell cavities: Fundamental research	All	All		
	(for establishment of production/surface treatment process)		(half)		
Α	9-cell cavities: HPGS regulation issues to be settled	All			
Α	Purchasing SC material (Nb, NbTi) contributed by JP	All			
Α	Industrial production with globally shared contracts		All	All	
Α	1 st vertical test (VT), and further efforts (2 nd and later cycle process)			All	All
Α	Clean room work procedure (Robotics technology to be matured)	All	All	All	All
Α	Quality control/assurance	All	All	All	All
Note: 9-cell cavity production is assumed to be continued after Y3 (totally 120 cavities in TPD)					

Cornell SRF Facilities

Clean room, chemical facility, UHV furnaces, coating furnaces, cryogenic RF test facility...

Cornell SRF Facilities: High-Field Sample Cavity

Ginzburg-Landau Simulation of Vortex Nucleation In Grain Boundaries

- Geometry of grain^{$\hat{\lambda}$} boundaries lowers vortex entry field (for $\xi << \lambda Nb_3Sn!$)
- New setup to measure vortex entry fields of superconducting samples

Surface roughness enhances
local surface fields

Cornell SRF Facilities: High-Speed T-Map

Questions?

Current and former Liepe Group graduate students at SRF'23