ILC Technology Network (ITN)

KEK / IDT-WG2 Shin MICHIZONO (KEK)

- ILC accelerator
- ILC Technology network
 - SRF
 - Sources
 - Nanobeam

IDT-WG2

IDT-WG2 has about 50 accelerator researchers from around the world participating in discussions on ILC accelerator development research.

IDT-WG2

				IDT E	В					
			Sh	IDT WG nin Michizon Benno List (E	62 o (Chair) Deputy)					
ML&SRF group DR/BDS/Dump group							~			
Yasuchika Yamamoto		KEK	Toshiyuki Okugi Karsten Buesser	KEK DESY						
Sergey			Philip Burrows	U. Oxford			Source	sgroup		
Belomestny	/kh	FNAL	Dahar David	Australian			Kaoru Yokoya	KEK		
Nuria Catala	an	CERN	Ronan Dowd	Synchrotron	Dump sub-gr	oup	im Clarke	STFC		
Enrico Cenn	ni	CEA	Angeles Faus-Golfe	IJCLab	Nobubiro		Steffen Doebert	CERN		~ ~ ~ ~ ~ ~
Dimitri Delik	karis	CERN	Andrea Latina	CERN	Terunuma	KEK	Yoshinori Enomoto	KEK	Civil engineerin	ig group
Luis Garcia 1	Tabares	CIEMAT	Kiyoshi Kubo	KEK	Toshiyuki Okugi	KEK	loe Grames	JLAB	Nobuhiro Terunuma	KEK
Rongli Geng	5	JLAB	Jenny List	DESY	TOSHIYUKI OKUği	KLK	Hitoshi Hayano	KEK	John Andrew	CEDN
Hitoshi Haya	ano	KEK	Thomas	SLAC	Crab sub-gro	oup	Masao Kuriki	U. Hiroshima	Osborne	CERIN
Bob Laxdal		Triumf	Markiewicz	SLAC			Benno List	DESY	Tomoyuki Sanuki	U. Tohoku
Matthias Lie	epe	Cornell	Brett Parker	BNL	Peter McIntosh	STFC	lenny List	DESY		
Peter McInt	tosh	STFC	Ivan Podadera	CIEMAT	Yasuchika	КЕК	Gudrid Moortgat-			
Louro Mono		INFN	David L. Rubin	Cornell	Yamamoto		Pick	U. Hamburg		
Laura Monaco		Milano	Nikolay Solyak	FNAL			Sabine Riemann	DESY		
Olivier Napo	oly	CEA	Nobuhiro				Datas Cissana	CERN -		
Sam Posen		FNAL	Terunuma	NEN			Peter Sievers	retired		
Robert Rimr	mer	JLAB	Kaoru Yokoya	KEK			Tohru Takahashi	U. Hiroshima		
Roger Ruber	r	JLAB	Mikhail Zobov	INFN LNF						
Marc C. Ros	S	SLAC								
Kensei Ume	mori	KEK								
Hans Weise		DESY								
Akira Yama	moto	КЕК								

Those in red are Steering members.

ILC and the Accelerator Technology

Parameters	Value		
Beam Energy	125 + 125 GeV		
Luminosity	1.35 / 2.7 x 10 ¹⁰ cm ² /s		
Beam rep. rate	5 Hz		
Pulse duration	0.73 / 0.961 ms		
# bunch / pulse	1312 / 2625		
Beam Current	5.8 / <mark>8.8</mark> mA		
Beam size (y) at FF	7.7 nm		
SRF Field gradient	< 31.5 > MV/m (+/-20%) Q ₀ = 1x10 ¹⁰		
#SRF 9-cell cavities (CM)	~ 8,000 (~ 900)		
AC-plug Power	111 / 138 MW		

Area systems of the ILC

IDT Scope for ILC Realization

https://linearcollider.org/wpcontent/uploads/2023/09/ID T-EB-2021-001.pdf https://linearcollider.org/wpcontent/uploads/2023/09/IDT-EB-2023-002.pdf KEK obtained a budget for these R&Ds and started the activity from this April.

WP-Primes at ILC Technology Network

These WPs can be applied to various advanced accelerators.

Cavity production CM design Crab cavity E- source Undulator target Undulator focusing E-driven target E-driven focusing E-driven capture Target replacement DR System design DR Injection/extraction Final focus Final doublet Main dump

ILC Technology Network (ITN)

KEK / IDT-WG2 Shin MICHIZONO (KEK)

- ILC accelerator
- ILC Technology network
- SRF
 - Sources
 - Nanobeam

WP-prime 2: Cryomodule (CM) Design (Scoping the CM Global Transfer and Performance Assurance)

Referring European XFEL and LCLS-II experiences

- Unify cryomodule (CM) design with ancillaries, based on globally common engineering design, drawings & data-base
 Establish globally compatible safety design base to be approved/authorized by HPGS regulations individually in each region,
- most likely referring ASME guidelines to be compatible with Japanese regulations.

Region Regulation	Americas ASME	Europe Eu-EN, TUV	Japan/Asia JP-HPGS Act	
CM tech. design base	LCLS-II	Euro-XFEL	KEK-STF, AST-IFMIF	
ILC CM design	Common CM design globally compatible to HPGS regulation in all regions, and most likely ASME guidelines to be compatible with Japanese regulations.			

WP-prime 3: Crab Cavity Development

IP

GFEX2C

Pre-down-selection review hosted by KEK chose two primary candidates on Apr/2023

- ◆ RFD (1st), QMiR (2nd), Elliptical (3rd)
- Development and evaluation of two prototype cavities
 - ◆ KEK will provide for necessary Nb material to produce them
- RF property simulation to optimize cavity design
- Demonstration of synchronized operation with two prototypes
- Down-selection to choose final cavity design
- Cryomodule design based on final cavity design

ltem	Recent specification (after TDR)	
Beam energy	125 GeV (e ⁻)	
Crossing angle	14 mrad	
Installation site	14 m from IP	
RF repetition rate	5 Hz	
Bunch train length	727 µsec	
Bunch spacing	554 nsec	
Operational temperature	2.0 K (?)	
Cavity frequency	1.3/3.9 GHz	
Total kick voltage	1.845/0.615 MV	
Relative RF phase jitter	0.023/0.069 deg rms (49 fs rms)	

Elliptical/Racetrack (3.9 GHz)	Lanc. Univ.	Isput Coupler LOM Coupler HOM Coupler HOM Coupler		
RF Dipole (RFD)	ODU			
Double Quarter Wave (DQW)	CERN	Capacitive plane		
Wide Open Waveguide (WOW)	BNL			
Quasi-waveguide <u>MultIcell</u> Resonator (QMIR)	FNAL	Rem pipe Klipsical electroles Perer coupler Vac		

ODEX1S

SD0 ZVFONT

QD0

QFEX2AS

QF1 SF1

two beamline distance 14.049m x 0.014rad = **197mm**

- S (1

CRAB

QFEX2BS

ILC Technology Network (ITN)

KEK / IDT-WG2 Shin MICHIZONO (KEK)

- ILC accelerator
- ILC Technology network
 - SRF
- ➡ Sources
 - Nanobeam

WP-prime 4: Electron Gun

- \blacklozenge The electron gun consists of
 - ≻ High-voltage photo gun
 - ➤ Drive laser system
 - ➤ GaAs/GaAsP Photocathode
- \blacklozenge High-voltage gun is the most urgent item
 - ➤ The gun voltage in TDR is 200 kV. A higher voltage desirable.
 - ➤ Meaningful technical progresses since TDR would be reflected in a new design
 - ➤ New GaAs gun based on lessons learned from 350 kV CsKSb magnetized dc photogun

WP-Prime 6/7: Undulator-driven e+ Source

WP-prime 6: Rotating Target for Undulator Scheme

◆ Target specification

- ➤ Titanium alloy, 7mm thick (0.2 X_0), diameter 1m
- ➤ Rotating at 2,000 rpm (100 m/s) in vacuum
- > Photon power ~60 kW, deposited power ~2 kW
- ► Radiation cooling
- ➤ Magnetic bearings
- ◆ R&D to be done as WP-prime
 - Design finalization, partial laboratory test, mockup design (in the first 2 years)
 - Magnetic bearings: performance, specification, test (in the remaining years)

WP-prime 7: Focusing System for Undulator Scheme

- The critical item for the undulator scheme is the magnetic focusing system right after the target
- ◆Possible candidates are: (a) Pulsed solenoid, (b) Plasma lens
- ◆ The strongest candidate is (a) pulsed solenoid.
- ◆R&D items to be done as WP-prime
 - ➤ Detailed simulations for (a) (already on-going)
 - Principal design for a prototype pulsed solenoid
 - Field measurements with 1kA (pulsed and DC) and with 50kA both in a single pulse mode and finally in a 5ms pulsed mode
 - Prototype of (b) plasma lens (funded study on-going)

WP-Prime 8~11: Electron(e-) driven positron source

WP-prime 8: Rotating Target for e-Driven Scheme

- ◆ Target specification
 - ≻ W or W-alloy, ~16 mm (5 X_0) thick, diameter 50 cm
 - \succ Rotating at 5 m/s in vacuum
 - \succ Water cooled.
 - ≻ Vacuum seal
- ◆ R&D items to be done in 2 years
 - ➤ Target stress calculation with FEM
 - ≻ Vacuum seal
 - ➤ Target module design and prototyping
 - \succ W-Cu connection test and evaluation

WP-prime 9: Focusing System

- Flux Concentrator (FC) is chosen as the focusing device after the target
- The specification parameters such as max field, electric current and the dynamic force are satisfied in existing target, but the pulse energy and the heat load are higher.
- ◆ A prototype necessary after detailed design study
- ◆ R&D items as WP-prime
 - Flux concentrator conductor design (in first 2 years)
 - Conductor prototyping (in the remaining years)

←	100 mm
180 mm 64 mm	beam Per
ر 70 mm	primary coil

170 mm

Parameter	ILC FC	Unit
Max. B field	5	Т
Max. surf. current	25	KA
Dynamic force	125	kA.T
Pulse energy	140	J
Average Power	13.7	kW

WP-Prime 8~11: e-driven positron source

WP-prime 10: Capture Cavity and Linac for e-Driven Scheme

- ◆ Technically the most critical element is the L-band, standingwave structure right after the target and FC.
 - \succ High beamloading (up to ~1A)
 - ➤ Special bunch pattern
 - ➤ Changing beam current (mixed electron-positron, capture process in RF buckets)
- ◆ R&D items as WPP-10 for the first 2 years
 - > APS (Alternating Periodic Structure) cavity design and cold model
 - ► Beam-loading compensation and tuning method
 - \succ Power unit prototype design
 - \succ solenoid design
- Prototyping of these components in later years

WP-prime 11:Target replacement

- Special attention is needed due to the high radiation of the target area. This is a common issue for E-Driven and Undulator positron source.
- ◆ Careful design of shielding is required.
- The components near the target (target, flux concentrator, first cavity with solenoid) require replacement in every few years. The work must be done by remotely.
- The works to be done as WP-prime
 - \succ Conceptual design
 - ➤ Fabricate Mockup
 - > Prototyping of critical components

ILC Technology Network (ITN)

KEK / IDT-WG2 Shin MICHIZONO (KEK)

- ILC accelerator
- ILC Technology network
 - SRF
 - Sources

WP-prime 12/14: Damping ring

WP-prime 12: System design of ILC DR	WP-prime 14: System design of ILC DR injection/extraction kickers		
 The ILC damping ring (DR) is required to satisfy the low emittance and the large dynamic aperture simultaneously. The ILC DR will be further improved by incorporating the findings of the latest light source design. Increasing the dynamic aperture is also important in the design of DR. By quantitatively evaluating the effect of fringe field to the dynamic aperture of magnets in ILC DR, the method for evaluating fringe field to the dynamic aperture in accelerator design will be established and the design of ILC DR will be optimized. 	 A fast kicker system using a semiconductor pulse power supply with nanosecond response was confirmed as proof of principle at KEK's ATF about 10 years ago. Semiconductor technology has been evolving, and it is now possible to advance nanosecond response beam injection/excitation systems using the recent semiconductor technology. The technical evaluation of the fast kicker power supply using the recent semiconductor technologies. The evaluation of fast pulsed power supply technology will contribute not only to the fast kicker system but also to the performance and reliability of nanosecond-scale beam control technology and its application to a wide range of accelerator systems. 		
Dynamic aperture evaluation with fringe effect (SuperKEKB DR) Dynamic aperture for	ILC DR (hard edge) Beam injection/extraction system		

-2 0 2 x amplitude (mm^{1/2})

80

After optimizat

30

10 20

 $\frac{\alpha}{2}$

40

20

0

-30

-20

-10 0

 $\Delta E / \sigma_E$

 n_r

QD

18

WP-prime 15: System design of ILC FFS

- ATF2 beamline is the only existing test accelerator in the world to test the final focus system (FFS) of linear colliders.
- The following 3 research topics are important to be pursued at the ATF.
 - wakefield mitigation
 - correction of higher-order aberration
 - ♦ training for ILC beam tuning
- The technical research at ATF2 beamline has proceeded and should continue to be based on the ATF international collaboration, or its extension (welcome to new collaborators).

ATF collaboration

Maximum search algorithms to be applied to beam tuning (Machine Learning)

Octupole magnets for higher-order aberration

WP-prime 16/17: Final doublet/Beam dump

WP-prime 16: Final doublet design optimization

- Cooling of the superconducting ILC final focus magnets will be performed using 2K superfluid helium to realize superconducting magnets with high oscillation stability.
- ◆Quantitative evaluation of the vibration generated by the 2K cooling system located on the side of the final focus magnets has not been completed.
- •We will measure and evaluate the vibration generated by the 2K cooling system by using the prototype.

Prototype of ILC service cryostat (2K cooling system; BNL)

WP-prime 17: Beam Dump

- Finalize the engineering design of the main beam dump system
 - Vortex water flow in the dump vessel
 - Cooling water circulation and heat exchange
 - Remote exchange of the beam window
 - Countermeasure for failures / safety system

ITN in progress

For WPP-1&2 (SRF cavity, CM), we have already started technical discussions with researchers in Europe and the USA.^{Intenational development team} For WPP-15 (Final Focus System), European researchers joined to the ATF experiments in this June operation.

Thank you for your attention