Activities for ILC in Japanese HEP community

11th Oct. 2023

Shoji ASAI (ILC Japan spokesperson, U-Tokyo)

The Plan of Japanese HEP program

arXiv:2203.13979 input for Snowmass

		2012	2015	2018	2021	2024	2027	2030	2033	2036	2039	2042	2045]
energy frontier	e [≁] e ⁻ (ILC)				pre I	paratory phase		construc	ction			$\begin{array}{c} g_{\rm hZZ} \sim 0.4\\ Y_{\rm b}, Y_{\rm c}, Y_{\rm l} \sim 1-2\%,\\ Br \left({\rm H} \rightarrow {\rm inv.} \right)\\ \Delta \Phi_{\rm CP}^{-} 4^{\circ}, \Gamma_{\rm l} \\ \Lambda \left({\rm Higgs \ compos} \\ m_{\rm A} ({\rm SUSY}) < \right. \end{array}$	%, g _{hgg} ~2% < 0.3%, ,~3% ite)< 3TeV 1TeV uture ugrade	ILC
	p-p (HL-)LHC			SUSY Yt, Yb	< 2.5TeV	~ 20%		Y t , Y b	SUSY < 3 , Y ₇ , Y _µ ~	3 TeV 10%				LHC
neutrino • proton decay	Super K			Protor	n Decay 10 ³⁴ vr	SN relic]
	т2К			2.14	,.	CPV 3σ								
	Hyper K				constr	uction		CPV Mass	5 σ Source of the second	N BUISI	Proton SN relia	Decay ~10 ³⁵ c neutrino 4-5	yr io	V
flavor	SuperKEKB	constructio	Φ R(D* Br(τ→μγ):4 Br(B– hoton 1GeV:ε	2 : ± 4°) : ± 9% 45x10 ⁻⁹ →K ^(*) vv) < 10 ⁻³		5 ab ⁻¹ ± 2° ± 3.2% < 14.7x10 ⁻¹	•	50 ab ⁻¹ ± 0.6° ± 2.1% < 4.7x10° ± 10% < 4x10°	9				Sur KEI	ber (B
	кото	Br. 10 ⁻⁸	$(K_L ightarrow \pi^0 u \overline{ u})$ 10 ⁻⁹			O(10 ⁻¹¹)			O(40 ev	ents)				
	Muon rare decay	$\mu \rightarrow e\gamma$ $\mu \rightarrow e$ conv.	MEG 10 ⁻¹³		DeeMe 10 ⁻¹³	MEG I 10 ⁻¹⁴ COME ¹⁵	T COI 10	MET) ⁻¹⁷						
	Muon g-2/EDM					µ g-2	: 0.4ppm.	µ EDM	: 10 ⁻²¹ e • 1	cm				1
	Neutron EDM		n : 10-2	° ⁶ e∙cm			n : 10 ⁻²⁷ e	e • cm		n : 10	⁻²⁸ e • cm			

The Plan of Japanese HEP program

ILC-Japan was set up by JAHEP (Japan Association of High Energy Physicists) May 2021

- 1) ILC-Japan represents our community (JAHEP) for ILC Promotion.
- 2) Tight collaboration with KEK and IDT
- ILC-J Collaborates with Future Project Committee (Younger generation) to realize ILC and encourage younger generation to join ILC
- 4) Domestic / International collaboration

Promotion scheme of ILC

The Results of five party meeting

FP meeting plays important role in the promotion

1) Budget for ILC R&D increases by factor 2 -> ILCTN

2)

Integrated Innovation Strategy 2023 (Government Policy)

Determined in the last June

Chap.2 Science, technology and innovation policy

Promote the development and utilization of large-scale projects and cutting-edge projects

Steadily develop technologies related to future high-performance accelerators

Start R&D future detector as global efforts

1) KEK Energy Frontier Group (LHC/ATLAS) starts R&D Solid State Detector

Proposal task list

Solid state detector :

- Monolithic CMOS sensor with European groups
- Exploiting the properties of SiGe BiCMOS
- Explore LGAD capability
- Radiation hardness of semiconductor detectors
- R&D of the new material sensor

Electronics :

- R&D for ultra high-speed date transfer (optical)
- Al on FPGA

- Detector and computing will be completely changed by AI (in Era of 2030)
- Machine Learning : AI (in Era of 2030)
 Application of AI/ML to detector operation
- Application of AI/ML to detector production and QC/QA
- Application of AI/ML to Object ID, track/vertex reconstruction

Magnet :

- Feasibility study of the detector magnet
- Possibility of HTS
 Calorimeter

Quantum Technology

② Boost up Global discussion

These R&D

will/have start

Within the international R&D framework:

International is crucial for the future detector.

① Break through encourage younger generation to join.

Timeline / Step-by-Step ILC promotion

This Timeline is considered by us, Discussed in IDT/ICFA/Diet Federation. not Government approved.

IDT view on the ILC project timeline

-success oriented and asuming no major incident-

- Budget is ready
- Various National Labs join ILCTN

2nd Stage ILC TN develops TC-WP We cultivate environment for international discussion (both @ scientist community and government level) Japan takes role / initiative in ILCTN (we are asking to JG)

- FCC-ee FS final report
- recognize ILC as the most realistic, cost-friendly, carbon-friendly project
- Understand of Governments/Communities ILC is global project
- International situation (Pandemic, global economy, tension)

3rd Stage Governments discuss cost sharing/responsibility of ILC (as Global project)

- Fix final cost including civil engineer.
- Cost sharing / responsibilities are agreed @ Governments

Start construction.

2nd Stage ILC TN develops TC-WP

Now

We cultivate environment for international discussion

(both @ scientist community and government level)

Japan takes role / initiative in ILCTN (we are asking to JG)

- FCC-ee FS final report
- recognize ILC as the most realistic, cost-friendly, carbon-friendly project
- Understand of Governments/Communities ILC is global project
- International situation (Pandemic, global economy, tension)

3rd Stage Governments discuss cost sharing/responsibility of ILC (as Global project)

- Fix final cost including civil engineer.
- Cost sharing / responsibilities are agreed @ Governments

Start construction.

Thank you for your attention !!