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Cornell Laboratory for Accelerator-based 
Sciences and Education 
CLASSE

Accelerator physics
Innovation in high quality electron beams

Particle and astrophysics
CMS (NSF upgrade lead), muon g-2, cosmology, 
theory

CHESS
X-ray user facility used by 1300 scientists annually 
from around the world
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World renowned research and 
leadership in large-scale projects



High impact accelerator research
• Superconducting acceleration
• Energy Recovery Linacs
• Stored beam phenomena
• Bright electron sources

Strong academic program in 
accelerator science
~20% of US PhD’s   
15 current grad students
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Student and post-doc alums:
SLAC and FNAL SRF heads,
FNAL Chief Tech. Officer, 
FNAL Interim Assoc. Lab. Dir.
ANL APS Acc. Div. Dir.,
SLAC Acc. Div. Head (former), 
JLAB Director
etc.

Hands-on training



Cornell-trained accelerator physicists

Ahrens, Lief BNL, AGS operation Dir.

Belomestnykh, Sergey FNAL, SRF Director

Byrd, John LBL Fusion-Accel. Dev. Head

Blum, Eric BNL

Chen, Tong Teledyne, VP for Dev.

Cultrera, Luca BNL

Dunham, Bruce xLIGHT

Kersevan, Roberto CERN

Decker, Glenn ANL

Dixon, Roger FNAL, Division Head

Edwards, Don FNAL/DESY

Edwards, Helen FNAL/DESY

Eremeev, Grigory FNAL, Dep. Division Dir.

Erickson, Roger SLAC, Dir. Accel. Ops & Safety

Gibbard, Bruce BNL

Gonnella, Daniel SLAC, Group Leader

Henderson, Stuart JLAB, Director

Herb, Steven DESY

Jackson, Gerald President, Hbartech

Karkare, Sid Prof. Arizona St. U.

Knobloch, Jens HZB, Prof.

Maxson, Jared Prof. Cornell

Mayes, Chris xLIGHT

Milton, Stephen Prof. CO State Univ.

Palmer, Mark BNL, Director Acc. Sci.& Tech. Initiative

Phillips, Larry JLAB

Peggs, Stephen BNL / ESS, Group Leader

Posen, Sam FNAL, Assoc. Director (Interim)

Proch, Dieter DESY, Group Leader

Romanenko, Alex FNAL, Assoc. Lab Director

Seeman, John SLAC, Accel. Division Head (former)

Siemann, Robert SLAC, Professor

Sinclair, Charlie JLAB, Assoc. Director

Sundelin, Ronald JLAB, Group Leader

Sutter, David UMD / DOE

Young, Elizabeth Raytheon

A sampler of past grad students, post-docs and faculty:
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Stored beams
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2010

CESR
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2020

First strong focusing 
synchrotron (now ubiquitous)

First chamber-less synchrotron
First use of SRF in a synchrotron

First cyclotron 
outside Berkeley

First synchrotron radiation 
beamline, first characteriz’n

CESR
 First bunched-beam crossing angle
 à KEK-B, DAPHNE, STCF, LHC-HL, EIC 
 First pretzel orbit à Tevatron
 First permanent magnet IP
 First SC magnet IP 
 à HERA, B-factories
 First ring with only SC cavities
 à light sources, KEK-B, EIC, …

For  a decade, CESR held the 
luminosity record

Livingston, McDaniel, Wilson, D. Edwards, H. Edwards, Littauer, Tigner, Hartill, Rubin

Electron cloud and wakefield results that 
informed design of the LHC injector and KEK-B
ILC damping ring design
Design for active Optical Stochastic Cooling

Figure from K. Berkelman, 
“A personal History of CESR and CLEO”



Cornell SRF cavities

Technology 
transfer

NSRRC

SSRF PLS
DLS

CLS
CESR

NSLS-II

SSRF

NSLS-II

PLS
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Cornell also provided the SRF cavities for CEBAF



World’s most energy efficient particle accelerator
Completed 2015
 

Superconducting linac
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Photocathode Lab

Alkali-antimonide growth and 
characterization

Bright source of electrons

These crystals are typically tuned to produce a roughly
flat intensity profile, with around 8 ps rms duration.

The cathode used for this study was a GaAs wafer grown
using molecular beam epitaxy on a p-doped GaAs sub-
strate. The cathode was heat cleaned to 620!C for 2 hours
and then activated to negative electron affinity using Cs
and NF3 via the ‘‘yo-yo’’ process. The doping density was
5" 1018 cm#3. The top 100 nm was left undoped. The
resulting cathode had a quantum efficiency of 4%, a mean
transverse energy of 90 meV, and a subpicosecond re-
sponse time at 520 nm.

The high-voltage DC gun used in these measurements is
the same one used in previous space charge and emittance
studies [10,11,19–25]. The gun was operated at 350 kV for
all measurements in this work. The beam line section just
after the gun, labeled ‘‘A1’’ in Fig. 1, houses two emittance
compensation solenoids and a 1.3 GHz normal conducting
buncher cavity. These elements were used to compensate
the initial emittance blowup near the cathode, and to com-
press the bunch longitudinally before further acceleration.
Immediately after emittance compensation, the bunches
were accelerated using the five superconducting niobium
cavities in the SRF cryomodule, labeled ‘‘A2’’ in Fig. 1. In
addition to increasing the beam energy, and thus partially
freezing in the emittance, the SRF cavities were also used
to perform further emittance compensation and longitudi-

nal compression via time-dependent transverse and longi-
tudinal focusing. Each cavity features a symmetric twin
input coupler design in order to eliminate any time-
dependent dipole kick [27,28] and can be operated with a
voltage in the range of 1 to 3 MV. For a more detailed
description of the injector cavities see [29].
Just after the cryomodule, the beam was passed through

a four-quad telescope, labeled ‘‘A3’’ in Fig. 1. The beam
was then directed into one of several diagnostic beam line
sections. The section most relevant to this work is the
‘‘B1’’ merger shown in detail in Fig. 2. The injector merger
section is comprised of a conventional three-dipole achro-
mat [30–32]. This design was chosen for its simplicity, and
due to the limited space available for the injector experi-
ment. The trade off for this approach is that while this
merger setup closes the single particle dispersion, it does
not satisfy the second achromat condition !0

sc ¼ 0 for the
space charge dispersion function [30,31]. Despite this, both
our simulations and measurements show that this merger
design does in fact preserve low emittance for our operat-
ing parameters. As was anticipated in [31], this was ac-
complished by finding the correct settings for the four
quadrupole magnets in the A3 straight section.
The emittance measurement system (EMS) used for

projected and time-resolved phase-space measurements is
a two-slit system with no moving parts [22]. Figure 2

FIG. 2. Top view of the B1 injector merger section showing the emittance measurement system.

FIG. 1. Top view of the Cornell ERL injector.

DEMONSTRATION OF LOW EMITTANCE IN THE . . . Phys. Rev. ST Accel. Beams 16, 073401 (2013)

073401-3

DC GunSRF accelerationDiagnosticsBeam dump

START 

HERE

• Record current for a low 
emittance source (>65 mA)

• Record low emittance
• Good cathode lifetime
• Bunch charges up to 2 nC

PRSTAB 18, 083401 (2015)

Merger
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• First multi-turn ERL (4 turns)
• 99.4% energy recovery after turn 1
• Beams with 4 energies in a shared 

FFA beampipe
• Met all performance goals, 

December 2019

CBETA Energy Recovery Linac
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“CBETA will pioneer 
several energy-saving 
concepts in accelerator 
design.”    
-National Academies 
Report, July 2018

Partnership with BNL

ERL concept invented at Cornell  
Tigner 1965

electron injector

linac

L E T T E R E  A L L A  R E D A Z I O N E  
(La responsabilitd sctentifica degli seritti inseritt in ~uesta rubrica ~ completamente lasctafa 

dalla Direzlone del periodico ai singolt autori) 

A Possible Apparatus for Electron Clashing-Beam Experiments (*). 

M. TIGX:ER 

Laboratory o] =ATuclear Studies, Cor,~ell University - Ithaca, _~T. y .  

(ricevuto il 2 Febbraio 1965) 

While the storage ring technique 
for performing clashing-beam experi- 
ments (1) is very elegant in concept it 
seems worth-while at the present junc- 
ture to investigate other methods which, 
while less elegant or superficially more 
complex may prove more tractable. 

In  order to be useful for clashing- 
beam work an acceleration device must 
produce beams of small cross-section or 
beams of high enough quali ty that  they 
may be focused to a small spot in the 
interaction region or regions. Such beams 
are well known to be produced by linear 
radio-frequency accelerators. Figure 1 
depicts a rudimentary type of arrange- 
ment for performing a clashing beam 
experiment with standard traveling wave 
linaes. For purposes of illustration let 
as consider two linaes having energy 
gains of 500 MeV each and producing 
continuous beam currents of 50 to 
100 milliampere. (As we shall see cur- 
rents of this order would be necessary 
r obtain useful interaction rates at this 

(*) Work supported in par t  by  the  United 
SLates Nat ional  Science Foundation. 

(1) See for in s t ance  G. K. O'NEILL: Phys. 
Rev.,  102, 1418 (1956). 

energy.) Under these conditions the rf 
power necessary to establish the accel- 
erating field in the guides would be of 
the order of 100 megawatt in a standard 

~ \  intecaction ceg/on / . "  

/ 

O- smaa crossing angle 

Fig. 1. 

design while an additional 25 to 50 mega- 
watt  would be carried away by each 
beam. Although in principle it may be 
possible to produce and handle this 
large power the sheer brutishness of the 
scheme robs it of all appeal. 

With some modification we may be 
able to retain the basic advantages of 
the linear device while avoiding the 



~90 expert engineers and technicians
RF systems, cryogenics, vacuum systems, electronics and 
mechanical design, systems design, computing, shops…

Extensive facilities
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~$1 billion in infrastructure



Current Activities and Plans

Oct. 11, 2023 Cornell Accelerator Science 11



Center for Bright Beams
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NSF Science & Technology Center
Gaining the fundamental 
understanding needed to transform 
the brightness of electron beams.

CBB supports ~40 grad students 
and postdocs

51 graduates to date

Beam 
Production

 Better 
photocathodes

Beam 
Acceleration
Better, simpler 

devices

Beam Dynamics 
and Control

For better beams at 
the target

Lab Affiliates

CBB joins chemists, surface scientists, condensed matter physicists, ab initio 
physicists, electron microscopists, and accelerator scientists  



Photoemission Electron Sources
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Applications
• X-ray FELs (both large and compact)
• Beam cooling systems, eg for FCC-hh
• Drive beam for wakefield accelerators
• Ultrafast electron microscopy/diffraction
• Bright, spin-polarized bunches for e+e– 

colliders
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Cold Cu (100) (low QE)
PRL 125, 054801(2020)  
Sid Karkare, ASU

APL 120, 194102 (2022)

First single crystal cathode

PRL, 128, 114801 (2022)

CsSb

What about beam 
polarization?

Do they produce 
high current?

Can we make 
them robust?

Elena 
Echeverria, PD

Chad 
Pennington, 

grad std.
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MEDUSA

10 nm periodicity of the Moiré superlattice
First observation in an ultrafast setup

Large coherence length (10 nm) enabled by 
near-ideal beam  emittance 0.7 nm
Arxiv: 2206.08404

1kz rep rate; EMPAD high dynamic range detector

MoSe2
WSe2

Single hexagonal atomic layers Moiré patterntwist

Charles 
Zhang 

grad std.

Chad 
Pennington 

grad std.

Ultralow emittance beamline

Michael 
Kaemingk 
grad std.



HERACLES beamline

• 200 keV electron gun at up to 10 mA average beam current

• Photocathode lifetime experiments: 
GaAs, alkali-antimonides, GaN

• Unique facility: only high current test gun on a university campus

• Upgrades in progress! 
New growth chamber for testing advanced GaAs activation coatings 

Grad std 
Sam 

Levenson
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SRF Acceleration

16Cornell Accelerator Science

Recent SRF Highlights
• Deeper explanation of N doping 

normal-conducting states at the surface
Deyo et al, Phys Rev B 106, 104502 (2022)

• First successful Nb3Sn (2015)
Inspired FNAL and JLAB programs

• Better Nb3Sn Growth 
via electrochemical synthesis 
Sun et al, arxiv:2302.02054

• Nb-Zr:  Better than Nb3Sn?
Potential for high gradient, easy growth
Ginsberg Landau: Bsh up to 350 mT  
àup to ~85 MV/m acc. Gradient
Tc ~ 16 K, achieved
Sitaraman et al, PRAppl(2023)
Sun et al., Adv.Electr.Mat. (2023)

Oct. 11, 2023

Facilitated by Cornell’s

outstanding electron microscope 
and nanofabrication facilities,
and leading materials experts

electrochemical Nb3Sn (Fig. 3d), whereas vapor-diffused Nb3Sn comprises both smooth and uneven regions. Smooth regions
of both vapor-diffused and electrochemical Nb3Sn look similar. However, the rough regions on vapor-diffused Nb3Sn, e.g., an
extreme example in Fig. 3e, exhibit 1 – 2 µm surface variation along with no Nb3Sn film regions. This rough surface is likely
improved in vapor diffusion by a "correct" Sn-vapor flux and thinner films19, but additional performance issues emerge, e.g.,
poor interfaces and reproducibility. Our electrochemical Sn pre-deposition remains feasible and promising to resolve these
issues collectively.

To effectively evaluate surface profiles, we performed fast Fourier transformation (FFT) to quantify power spectral densities
(PSD) of surface features at different spatial frequencies (Fig. 2c). We focus on 0.5 – 3 µm�1 frequencies where sharp features
significantly enhance local fields. Nb3Sn from dendrite-free pre-deposits, regardless of their plating times (2.5 – 10 min),
show 5⇥ lower PSDs than vapor-diffused Nb3Sn, e.g., at the 2 µm�1 frequency. Dendrite formation at 20 min plating yields
the highest PSDs for electrochemical Nb3Sn similar to the values in vapor-diffused Nb3Sn. Furthermore, the dendrite-free
pre-deposits show even lower densities than their converted Nb3Sn, suggesting that optimization of thermal annealing may
further improve the surface conditions.

Our results indicate that smooth Sn pre-deposits are crucial to overcoming the spatial variation in nucleation rate and
lessening the kinetic requirement for Sn diffusion by providing sufficient Sn sources near the nuclei during alloying. In contrast,
vapor diffusion studies24, 27 revealed that a low and spatially differing Sn supply resulted in erratic nucleation; the long-range
obstructed lateral Sn diffusion on Nb surfaces or the low Sn bulk diffusion within Nb and Nb3Sn grains24, 27 exacerbated these
problems. Here, the Sn pre-deposits avoid these high surface and chemical barriers for Sn diffusion and ensure a uniform
distribution of nucleation sites, ameliorating the surface profile.

Improved stoichiometry in electrochemical Nb3Sn and comparison with vapor diffusion

Stoichiometry within the first few hundreds of nanometers surface where RF fields penetrate is critical to sustaining superconduc-
tivity of Nb3Sn and, herein, a low surface resistance under extreme conditions, e.g., high fields and high operating temperatures.
We evaluate the Nb/Sn atomic ratios as a function of film depth using X-ray photoelectron spectroscopy (XPS) combined with
ion etching and further map the Sn compositions on film cross-sections using energy-dispersive X-ray spectroscopy (EDS)
under STEM after FIB polishing. We compare the results of electrochemical and vapor-diffused samples.

For electrochemical Nb3Sn, XPS depth profiling shows a constant 3:1 ratio at the surface 600 nm region with the first a few
nanometers affected by oxides (Fig. 3a and up to 2 µm data in Fig. S12). For example, XPS spectra of the film after sputtering
away surface oxides (Fig. 3b) confirm a homogeneous Nb3Sn stoichiometry of 75 at.% Nb and 25 at.% Sn. Surface EDS spectra
(Fig. S13) taken at different spots on the film verify this ratio.

Figure 3. Comparison of stoichiometry between electrochemical and vapor-diffused Nb3Sn. a | XPS depth profiling of
Nb3Sn made by electrochemical synthesis (es) versus vapor diffusion (vd) with/without pre-anodization (an). b | Typical XPS
spectrum for electrochemical Nb3Sn taken after etching surface oxides. c | Probability of Sn concentration over the entire film
region (e.g., shown in (d,e)) analyzed by cross-sectional 4D-STEM/EDS. d,e | Cross-sectional composition maps of (d)
electrochemical Nb3Sn and (e) vapor-diffused Nb3Sn (an extreme example).
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Vapor 
diffusion
Electrochem.
synthesis

Sn concentration

The BCS resistance is ½ that of 
vapor-diffused samples



• Facilities
Cornell SRF: World-class research and training 

• Impact World record Q0 of an SRF cavity installed in an accelerator cryomodule; 
world record accelerating gradient in an SRF cavity; world record continuous 
beam current accelerated in an SRF injector; first-ever alternative-material 
(Nb3Sn) SRF cavities that outperform traditional niobium cavities… 

 

Clean room, chemical facility, UHV furnaces, coating furnaces, cryogenic RF test facility…

• Training
Current SRF grad students
Recent alums include SLAC 
SRF group leader and FNAL 
interim Assoc. Lab. Dir.

Oct. 11, 2023 Cornell Accelerator Science 17



• SRF for sustainable 
science  

Current SRF R&D Areas 

• SRF for medicine, 
environment, industry

• Fundamental 
superconductivity 
and material growth

• SRF for the energy 
frontier

20× more 
efficient than 
Nb at 4.2 K!

1 μm
Nb

Nb3Sn

2 μm

4.2K

Turn Key 
Cooling

Higher frequency

=> compact SRF 

Nb-ZrNiobium
13 - 16 K9.2 KPredicted critical Temperature Tc

>300 mT ?220 mTPredicted superheating field Nb-Zr alloy

Au passivation 
Fundamental field limits

Nb3SnNiobium
18 K9 KCritical Temperature Tc

6 x 10106 x 108Q0 at 4.2 K
>10113 x 1010Q0 at 2.0 K

Oct. 11, 2023 Cornell Accelerator Science 18



Beam optimization with Machine Learning

Control 
parameters + 
Environmental 

factors 

Evaluation Metric 
(e.g., agreement with 
real measurements)

Neural Network

Bayesian Optimization
Find best settings 

for desired machine 
state

[1] W. Lin, et al., “Machine Learning Applications for Orbit and Optics Correction at the Alternating Gradient 
Synchrotron”, in Proc. IPAC’23, Venice, Italy, May 2023.
[2] W. Lin, et al., “AGS Booster Beam-based Main Quadrupole Transfer Function Measurements”, in Proc. 
IPAC’23, Venice, Italy, May 2023.

ML optimization of the AGS booster and LEReC

Lucy Lin
Grad std.

Oct. 11, 2023 Cornell Accelerator Science



EIC Design in the ERL / EIC group

Oct. 11, 2023 Cornell Accelerator Science 20

Beams are polarized to probe the
spin structure of protons

Sample Graduate Student Projects:

• Polarized electrons in the electron ring

• Polarized Protons in RHIC and the hadron ring,
implementation of polarization theory

• Space charge beams in the ERL-cooler

• Long-term stability in all EIC rings: 
Rapid Cycling Synchrotron, electron ring, ring-cooler

Ningdong Wang

Jonathan
     Unger

Matt Signorelli

Eiad Hamwi



Cold Copper at Cornell

SLAC Design: 5.712 GHz, 120 MV/m @ 77 Kelvin

C3 designInjector for FCC

We envision hosting a 
40-50 meter, 6 GeV linac 

demonstrator for these colliders.

Would revolutionize CESR
injection and open new
opportunities for x-ray

science.

CESR/CHESS

6 GeV

Oct. 11, 2023 Cornell Accelerator Science 21



ILC at Cornell
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Technical Contributions
Damping Ring
• CESR TA

Electron cloud, bunch-by-bunch diagnostics, low 
emittance tuning, intrabeam scattering

• ILC Damping Ring design 
Palmer, Rubin, Calvey, Ehrlichman, Shanks

Superconducting RF
• Reentrant cavity 52-59 MV/m
• High gradient, high Q R&D
• Vertical electropolishing 
• Second-sound for quench location

Source
• High bunch charge photoinjector

PRSTAB 18, 083401 (2015)
• Polarized electrons
• Polarized positrons (helical undulator) 

A. Mikhailichenko, Cornell LEPP CBN 05-2 (2005);
NIMA 610 (2009) 451–487

Committees
IDT Working Group 2 
Rubin (DR/BDS/Dump)
Liepe (SRF)

ALCC
Liepe, Patterson

First international 
TESLA Workshop
Cornell University, 
July 1990



Copies of this map can be purchased at the Cornell Store (C5; 607-255-4111).

OHR Organizational Development Services
Equine Drug Testing & Research Program

Dyce Laboratory for Honey Bee Studies
Cornell Business & Technology Park

Ithaca Tompkins Regional Airport
Laboratory of Ornithology

Equine Research Park
Liddell Laboratory
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Cornell Police, in G2 Barton Hall (see map, D5):
open 24/7

Metered Parking: Pay Monday-Friday, 7:30am-5pm 

Short Term Parking available: Please stop at an
information booth for details and any required
permit, or visit transportation.cornell.edu

Blue light telephones: Direct line to Cornell
Police for emergencies or other assistance

See other side for campus building guide.
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Welcome to  
Cornell University
Quick Tips to Navigate 
Our Campus
r�Visit a parking and information booth  

for parking permits and instruction.

rPay to park using your mobile device  
wherever you see a green Parkmobile sign.

t�$BNQVT�UPVST�BOE�BENJTTJPOT�JOGPSNBUJPO�
sessions are offered separately. See below  
for details.

r�On-campus dining options vary by day. Go to 
cornell.edu/visiting or take a stroll into nearby 
$PMMFHFUPXO
�XIJDI�PGGFST�B�WBSJFUZ�PG�EJOJOH
�
DPGGFF
�BOE�TOBDL�PQUJPOT�

r�Explore events and things to do at  
cornell.edu/visiting.

	%FUBJMT�PO�QBSLJOH
�UPVST
�BT�XFMM�BT�VOJWFSTJUZ� 
and college-specific admissions sessions  
can be found below.)

Questions? Please call or visit: 
Campus Information and Visitor Relations
Visitor Information Desk
.o'
���B�N�o��Q�N���4BU�
���B�N�o��Q�N�
%BZ�)BMM�-PCCZ
�����&BTU�"WF�
�*UIBDB
�/:������
cornell.edu/visiting

Tours
Walking campus tours generally depart from the 
%BZ�)BMM�-PCCZ��$IFDL�UIF�XFCTJUF�CFMPX�GPS�
DPOmSNBUJPO�PS�DBMM���������*/'0�	����
�
cornell.edu/visiting

More Information
Short Term Parking 
Please visit an information booth Mon.–Fri. to 
QVSDIBTF�B�QBSLJOH�QFSNJU
�HFU�EJSFDUJPOT
�PS�GPS�
general assistance. Payment or an appropriate 
QFSNJU�JT�SFRVJSFE�GPS�QBSLJOH�.PO�o'SJ�
 
�����B�N�o��Q�N�
�JODMVEJOH�IPMJEBZT�BOE�CSFBLT��
Please be mindful of parking restriction signs. 
Some areas are restricted to permit holders 
PO�FWFOJOHT�BOE�XFFLFOET��4UBUF
�MPDBM
�BOE�
university traffic and parking regulations are 
enforced at all times. transportation.cornell.edu

Parkmobile 
Pay-by-cell parking available at designated lots. 
Look for the green sign. Download the mobile app 
at parkmobile.com�PS�DBMM����������������

Admissions Information Sessions
*G�ZPV�BSF�BUUFOEJOH�B�VOJWFSTJUZ�PS�DPMMFHF��
JOGPSNBUJPO�TFTTJPO
�QMFBTF�TUPQ�BU�B�QBSLJOH�
and information booth Mon.–Fri. for parking and 
directions. admissions.cornell.edu 

Discover Ithaca, N.Y.
visitithaca.com

'PS�JOGPSNBUJPO�BCPVU�$PSOFMM�T�EJTBCJMJUZ�
BDDFTT�SFTPVSDFT�BOE�BDDFTTJCJMJUZ�NBQ
�
QMFBTF�WJTJU�cornell.edu/disability or call  
607-254-INFO (4636).

Tour stops
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Newman Lab

Superconducting RF 

accelerating cavities,

Photocathode lab,

Design and drafting,

Machine shop

CESR

Annex

Undulator lab,

CHESS–U 

magnet fab

Wilson Lab

CHESS, CESR, CBETA ,

Technical groups,

Business office

23

Physical Sciences 

Building

Particle and 

astrophysics

Electron source Lab

SRF Lab

CBETA
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