Accelerator Science at Cornell

Ritchie Patterson, with Ivan Bazarov, Don Hartill, Georg Hoffstaetter, Matthias Liepe, Nigel Lockyer, Jared Maxson,

Cornell Laboratory for Accelerator-based Sciences and Education CLASSE

Accelerator physics

Innovation in high quality electron beams

Particle and astrophysics

CMS (NSF upgrade lead), muon g-2, cosmology, theory

CHESS

X-ray user facility used by 1300 scientists annually from around the world

World renowned research and leadership in large-scale projects

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

High impact accelerator research

- Superconducting acceleration
- Energy Recovery Linacs
- Stored beam phenomena
- Bright electron sources

Strong academic program in accelerator science ~20% of US PhD's 15 current grad students

Student and post-doc alums: SLAC and FNAL SRF heads, FNAL Chief Tech. Officer, FNAL Interim Assoc. Lab. Dir. ANL APS Acc. Div. Dir., SLAC Acc. Div. Head (former), JLAB Director etc.

Hands-on training

Oct. 11, 2023

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

A sampler of past grad students, post-docs and faculty:

Ahrens, Lief	BNL, AGS operation Dir.	Jackson, Gerald	President, Hbartech
Belomestnykh, Sergey	FNAL, SRF Director	Karkare, Sid	Prof. Arizona St. U.
Byrd, John	LBL Fusion-Accel. Dev. Head	Knobloch, Jens	HZB, Prof.
Blum, Eric	BNL	Maxson, Jared	Prof. Cornell
Chen, Tong	Teledyne, VP for Dev.	Mayes, Chris	xLIGHT
Cultrera, Luca	BNL	Milton, Stephen	Prof. CO State Univ.
Dunham, Bruce	xLIGHT	Palmer, Mark	BNL, Director Acc. Sci.& Tech. Initiative
Kersevan, Roberto	CERN	Phillips, Larry	JLAB
Decker, Glenn	ANL	Peggs, Stephen	BNL / ESS, Group Leader
Dixon, Roger	FNAL, Division Head	Posen, Sam	FNAL, Assoc. Director (Interim)
Edwards, Don	FNAL/DESY	Proch, Dieter	DESY, Group Leader
Edwards, Helen	FNAL/DESY	Romanenko, Alex	FNAL, Assoc. Lab Director
Eremeev, Grigory	FNAL, Dep. Division Dir.	Seeman, John	SLAC, Accel. Division Head (former)
Erickson, Roger	SLAC, Dir. Accel. Ops & Safety	Siemann, Robert	SLAC, Professor
Gibbard, Bruce	BNL	Sinclair, Charlie	JLAB, Assoc. Director
Gonnella, Daniel	SLAC, Group Leader	Sundelin, Ronald	JLAB, Group Leader
Henderson, Stuart	JLAB, Director	Sutter, David	UMD / DOE
Herb, Steven	DESY	Young, Elizabeth	Raytheon

Stored beams

Livingston, McDaniel, Wilson, D. Edwards, H. Edwards, Littauer, Tigner, Hartill, Rubin

First chamber-less synchrotron First use of SRF in a synchrotron

First pretzel orbit -> Tevatron First permanent magnet IP First SC magnet IP → HERA, B-factories First ring with only SC cavities \rightarrow light sources, KEK-B, EIC, ... Electron cloud and wakefield results that informed design of the LHC injector and KEK-B For a decade, CESR held the

CESR

ILC damping ring design record Design for active Optical Stochastic Cooling

Figure from K. Berkelman,

2000 "A personal History of CESR and CLEO

Cornell SRF cavities

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Superconducting linac

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

World's most energy efficient particle accelerator Completed 2015

Bright source of electrons

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

- Record current for a low emittance source (>65 mA)
- Record low emittance
- Good cathode lifetime
- Bunch charges up to 2 nC
 PRSTAB 18, 083401 (2015)

Photocathode Lab

Alkali-antimonide growth and characterization

CBETA Energy Recovery Linac

ERL concept invented at Cornell Tigner 1965

A Possible Apparatus for Electron Clashing-Beam Experiments (*).

M. TIGNER

Laboratory of Nuclear Studies, Cornell University - Ithaca, N.Y.

(ricevuto il 2 Febbraio 1965)

AN ASSESSMENT OF U.S.-BASED ELECTRON-ION COLLIDER SCIENCE

NSENSUS STUDY REPORT

- First multi-turn ERL (4 turns)
- 99.4% energy recovery after turn 1
- Beams with 4 energies in a shared FFA beampipe
- Met all performance goals, December 2019

Partnership with BNL

"CBETA will pioneer several energy-saving concepts in accelerator design." -National Academies Report, July 2018

Oct. 11, 2023

~90 expert engineers and technicians

RF systems, cryogenics, vacuum systems, electronics and mechanical design, systems design, computing, shops...

Extensive facilities

Current Activities and Plans

Center for Bright Beams

NSF Science & Technology Center

Gaining the fundamental

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

CBB joins chemists, surface scientists, condensed matter physicists, ab initio physicists, electron microscopists, and accelerator scientists

University

Photoemission Electron Sources

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Oct. 11, 2023

MEDUSA Ultralow emittance beamline

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Single hexagonal atomic layers *twist* Moiré pattern

10 nm periodicity of the Moiré superlattice First observation in an ultrafast setup

Large coherence length (10 nm) enabled by near-ideal beam emittance 0.7 nm *Arxiv: 2206.08404*

1kz rep rate; EMPAD high dynamic range detector

Michael Kaemingk grad std.

Pennington

grad std.

Charles Zhang grad std.

HERACLES beamline

- Grad std Sam Levenson
- 200 keV electron gun at up to 10 mA average beam current
- Photocathode lifetime experiments: GaAs, alkali-antimonides, GaN
- Unique facility: only high current test gun on a university campus
- Upgrades in progress!
 New growth chamber for testing advanced GaAs activation coatings

SRF Acceleration

Recent SRF Highlights

- Deeper explanation of N doping normal-conducting states at the surface Deyo et al, Phys Rev B **106**, 104502 (2022)
- First successful Nb₃Sn (2015)
 Inspired FNAL and JLAB programs
- Better Nb₃Sn Growth via electrochemical synthesis Sun et al, arxiv:2302.02054

Nb-Zr: Better than Nb₃Sn? Potential for high gradient, easy growth

Ginsberg Landau: B_{sh} up to 350 mT \rightarrow up to ~85 MV/m acc. Gradient

 $T_c \sim 16$ K, achieved

Sitaraman et al, PRAppl(2023) Sun et al., Adv.Electr.Mat. (2023)

Facilitated by Cornell's

outstanding electron microscope and nanofabrication facilities,

and leading materials experts

Cornell SRF: World-class research and training

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Facilities

Clean room, chemical facility, UHV furnaces, coating furnaces, cryogenic RF test facility...

Training

 Impact World record Q0 of an SRF cavity installed in an accelerator cryomodule; world record accelerating gradient in an SRF cavity; world record continuous beam current accelerated in an SRF injector; first-ever alternative-material (Nb₃Sn) SRF cavities that outperform traditional niobium cavities...

Current SRF R&D Areas

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

 Fundamental superconductivity and material growth

Conventional niobium cavity at 4.2 K

Nb-Zr alloy

Nb₃\$r

um

SRF for the energy frontier

	Niobium	Nb-Zr
Predicted critical Temperature $\rm T_{\rm c}$	9.2 K	13 - 16 K
Predicted superheating field	220 mT	>300 mT ?

10¹

10¹⁰

10⁹

10⁸

• SRF for sustainable

science

	Niobium	Nb₃Sn
Critical Temperature T _c	9 К	18 K
Q ₀ at 4.2 K	6 x 10 ⁸	6 x 10 ¹⁰
Q_0 at 2.0 K	3 x 10 ¹⁰	>1011

• SRF for medicine, environment, industry

20× more 4 efficient than Nb at 4.2 K!

10

12

14

16

18

Beam optimization with Machine Learning

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

ML optimization of the AGS booster and LEReC

[1] W. Lin, et al., "Machine Learning Applications for Orbit and Optics Correction at the Alternating Gradient Synchrotron", in *Proc. IPAC*'23, Venice, Italy, May 2023.

[2] W. Lin, et al., "AGS Booster Beam-based Main Quadrupole Transfer Function Measurements", in *Proc. IPAC'23*, Venice, Italy, May 2023.

Oct. 11, 2023

EIC Design in the ERL / EIC group

Beams are polarized to probe the spin structure of protons

Sample Graduate Student Projects:

 Polarized electrons in the electron ring Matt Signorelli

Eiad Hamwi Polarized Protons in RHIC and the hadron ring, implementation of polarization theory

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

218 SPRINGER TRACTS IN MODERN PHYSICS

Georg Heinz Hoffstaetter

High-Energy Polarized Proton Beams A Modern View

D Springer

Space charge beams in the ERL-cooler

Long-term stability in all EIC rings: Rapid Cycling Synchrotron, electron ring, ring-cooler

Oct. 11, 2023

Cornell Accelerator Science

Ningdong Wang

naer

Jonathan

20

SLAC Design: 5.712 GHz, 120 MV/m @ 77 Kelvin

ILC at Cornell

Technical Contributions

Damping Ring

- CESR TA
 Electron cloud, bunch-by-bunch diagnostics, low
 emittance tuning, intrabeam scattering
- ILC Damping Ring design Palmer, Rubin, Calvey, Ehrlichman, Shanks

Superconducting RF

- Reentrant cavity 52-59 MV/m
- High gradient, high Q R&D
- Vertical electropolishing
- Second-sound for quench location

Source

- High bunch charge photoinjector PRSTAB 18, 083401 (2015)
- Polarized electrons
- Polarized positrons (helical undulator)
 A. Mikhailichenko, Cornell LEPP CBN 05-2 (2005);
 NIMA 610 (2009) 451–487

Committees IDT Working Group 2 Rubin (DR/BDS/Dump) Liepe (SRF)

ALCC Liepe, Patterson

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Questions?