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@ What makes a great photocathode?

1.) Brightness: a figure for the quality of the electron beam.

dy Beam current: quantum efficiency, laser fluence
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2.) Lifetime: how long the photocathode maintains efficiency during operation.
* In modern accelerators, beam brightness is limited at the photocathode.

 Alkali Antimonides (Cs;Sb, K,CsSb, Na,KSb etc.) are excellent
photocathode materials. Question: can we improve them?



@ Epitaxy and why It matters

* Answer: We can.
* Cs;Sb is conventionally grown polycrystalline with random long-range order.

Epitaxy is the alignment of crystal Material ordering eliminates defects that contribute to
layers with respect to an underlying W electron momentum spread (roughness, grain boundaries)
crystal seed layer.
We lattice-match Cs,;Sb films with the crystal substrate
(e.g. 3C-SiC(100)) via Molecular Beam Epitaxy (MBE)
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@ RHEED: a tool for determining epitaxy

Reflection High Energy Electron Diffraction « RHEED identifies the surface structure through grazing
(RHEED) incidence over the first few atomic layers of the sample.
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@ A new stoichiometric phase: Cs;Sb,

Azimuthally independent streaks in RHEED
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Image band pass filtered for contrast

Scanning Tunneling
Microscopy (STM)

- Surface roughness ~0.6 nm.
-Multimodal histogram indicates
flat steps along surface.

STM results courtesy of Hines
Lab [2] C.T. Parzyck, C.A. Pennington et al, “Atomically smooth films of

CsSb: a chemically robust visible light
photocathode” arXiv:2305.19553




CsSb compared to Cs,Sb
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» Estimated work functions of CsSb and Cs;Sb to be
2.18 eV and 1.63 eV respectively using a modified
Dowell-Schmerge model for semiconductors. [2]

CsSb has a photoemission threshold near 570 nm
(green-ish light).

Cs;Sb has the higher quantum efficiency in the visible
range. CsSb is exceptionally more robust to oxidation,
with the ratio of the decay constants being over an
order of magnitude.

Comparable roughness depending on growth
technique.




&S Optical interference in the cathode substrate
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» Further engineering potential — distributed
Bragg reflectors (DBRS).

*Enhanced photocathode performance through optimization of film thickness and substrate
Journal of Vacuum Science & Technology B 35, 022202 (2017); https://doi.org/10.1116/1.4976527



https://doi.org/10.1116/1.4976527

& Growing Cathodes: Digitally.

DTN,
« Pulsed Laser Deposition(PLD) S

— 266 nm pulsed excimer laser vaporizes Sb target,
condensing on substrate.

— Consistent rep rate and laser fluence leads to
extremely stable and controlled deposition rates.

Growth Controls: Characterization:

> Toubstrate » RHEED - surface structure
» XRD - bulk structure

> Flux rate » XRR — thickness and

roughness (rms)
» XRF - stoichiometry G .
> QE BRI | NSLs-I

4 beamline

—4| 4-ID(ISR)

« Does PLD vaporize atomic Sb or molecular




& CsK,Sb with epitaxial domains

Preliminary Data

+ K,CsSb lattice constant: ~8.61 Angs
* Graphene lattice constant: ~2.46 Angs

» The first epitaxial, bi-alkali antimonide photocathode confirmed with RHEED.
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@ Alkall antimonides at high gradients
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Next steps and future directions:

- Test percent-level QE cathodes at high gradients (planned for
summer 2023).

- Put a semiconductor substrate (e.g. SiC) on the INFN plug to
UCLA Pegasus loadlock test ordered AA cathodes at high gradients.
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@ Conclusions and Future Directions

Improved crystalline order of alkali antimonides is a promising path to higher
brightness photocathodes.

The Cs,Sh, photocathode has superb resistance to oxidation, low roughness,
and a photoemission threshold in the visible range.

MTE measurements of novel cathodes are underway at Cornell (See Charles
Zhang’s poster tomorrow!).

Implement semiconductor substrates (e.g. SIC) on the INFN plug@
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Thank you for your attention.

Any questions?
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Image courtesy of Samuel J. Levenson
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« EXxploiting optical interference effects via distributed Bragg reflectors (DBRs) could be
an exciting way to enhance QE.
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