Phase Space Reconstruction using Differentiable Simulations and Neural Networks

CBB Annual Meeting Cornell University - July 20th, 2023

J.P. Gonzalez-Aguilera* (UChicago)

* jpga@uchicago.edu

Manipulating Beams in Phase Space

PRL 129, 224801 (2022)

Manipulating Beams in Phase Space

Phase space distribution measurements

focusing lens

converging

beam

beam

waist

diverging

beam

diverging beam

- rotate beam by scanning focusing strength
- measure the beam size
- Fit and solve for ε

- Maximum entropy tomography (MENT)
- Algebraic reconstruction (ART, SART)

Phase Space Fitting as optimization problem

Phase Space Fitting as optimization problem

We want more detail:

- How do we **parametrize** the beam 6D phase-space distribution in a a **flexible** and **learnable** way?
- How do we run simulations that support optimization of extremely high dimensional problems (~1k parameters)?

Neural Network Parameterization of Beam Distributions

- 6D phase space distribution parametrization that is
 - flexible
 - learnable

Fully connected NN with ~ O(1k) parameters

Differentiable Simulations (Automatic Differentiation)

Keep track of derivative information during every calculation step using the chain rule and memory.

Fast and accurate highdimensional gradients

Enables gradient-based optimization of model with respect to all free parameters.

Easily optimize models with >10k free parameters.

Differentiable Simulations (Automatic Differentiation)

Keep track of derivative information during every calculation step using the chain rule and memory.

Fast and accurate highdimensional gradients

Enables gradient-based optimization of model with respect to all free parameters.

Easily optimize models with >10k free parameters.

T/T

$$\frac{\partial Z}{\partial Y}, \frac{\partial Z}{\partial K}, \frac{\partial \sigma_Z}{\partial K}, \dots \qquad \frac{\partial Q^{(i,j)}}{\partial Y}, \frac{\partial Q^{(i,j)}}{\partial K}$$

 $\Omega(i,j)$

Poster tomorrow!

Synthetic Example

Synthetic beam distribution in simulation

Screen images

9/15

Synthetic Example Reconstruction

Measuring Model Uncertainty

Create a **snapshot ensemble** to measure uncertainty by cycling the learning rate

Huang G. et al., ICLR 2017

Measuring Model Uncertainty

Huang G. et al., ICLR 2017

Tomography Example from AWA

AWA Reconstruction Results

Conclusions

- 4D detailed phase space reconstruction from few measurements and without special diagnostics
- Neural Network beam parametrization and differentiable simulations are not limited by dimensionality.
- Potentially extensible to 6D with the addition of longitudinal diagnostics.
- Can incorporate heterogeneous measurements:
 - More screens, BPMs, ...
 - Different types of data

Thanks! Questions?

Phase-Space Reconstruction:

- Ryan Roussel (SLAC)
- Auralee Edelen (SLAC)
- Christopher Mayes (SLAC)
- Daniel Ratner (SLAC)
- Seongyeol Kim (ANL)
- John Power (ANL)
- Eric Wisniewski (ANL)

Differentiable Accelerator

Modeling at UChicago:

- Young-Kee Kim
- Chris Pierce
- J.P. Gonzalez-Aguilera

Details: PRL 130, 145001 (2023)

This work was supported by:

- DoE contract No. DE-AC02-76SF00515
- NSF award PHY-1549132, the Center for Bright Beams
- Physical Sciences Division Fellowship, The University of Chicago
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Backup: Maximum Entropy Loss Function

Backup: Maximum Entropy Tomography (MENT)

Rotate phase space as before, but Note: $H \propto \log(\varepsilon)$ reconstruct the distribution from 1D $\rho(x, p_x)$ projections + maximize the beam distribution entropy Lagrange multiplier $\rho^* = \arg\min\{-H(\rho) + \lambda f(\rho)\}$ Distribution entropy **Discrepancy with measurement** 0.8 0.8 0.5 0.5 0.6 0.6 > 0 0.4 0.4 -0.5-0.5 -0.5 0.2 0.2 -1 -0.5 0.5 0.5 0.5 -1 -0.5 -1 -0.5 -1

 $\lambda_{\phi}^{\dagger}(\xi)$

Hock K. and Ibison M., JINST, 2013

Backup: Synthetic Example Reconstruction

Parameter	Ground truth	rms prediction	Reconstruction	Unit
\mathcal{E}_{χ}	2.00	2.47	2.00 ± 0.01	mm-mrad
ε_y	11.45	14.10	10.84 ± 0.04	mm-mrad
$\varepsilon_{4\mathrm{D}}$	18.51	34.83 ^a	17.34 ± 0.08	mm ² -mrad ²

Backup: AWA Reconstruction Results

Backup: AWA Reconstruction

Red border denotes test samples

Backup: Kernel Density Estimation (KDE)

Backup: Reverse vs Forward Autodiff

https://towardsdatascience.com/forward-mode-automaticdifferentiation-dual-numbers-8f47351064bf

Backup: Memory profiling

Test 1: 10 quads separated by drifts. Peak memory vs number of particles

Backup: Memory profiling

Test 2: 10⁴ particles Peak memory vs n quads

Backup: Memory profiling

