Photocathodes Characterization Techniques - Basics

Elena Echeverria Postdoctoral Associate - Theme 1

CBB Annual Meeting - July 22/2023

July 22/2023

イロト イヨト イヨト イヨト

Overview	Intro	QE	RHEED	XPS	MTE	Summary
•						

Intro

- Quantum Efficiency (QE)
- 3 RHEED (Reflection high energy electron diffraction)
- 4 XPS (X-ray photoemission spectroscopy)
- **5** MTE (Mean Transverse Energy)

July 22/2023

イロト イヨト イヨト イヨト

Overview	Intro	QE	RHEED	XPS	MTE	Summary
O	●0000	0000	0000	0000	00000	
Overviev	٨/					

- 2 Quantum Efficiency (QE)
- 3 RHEED (Reflection high energy electron diffraction)
- 4 XPS (X-ray photoemission spectroscopy)
- 5 MTE (Mean Transverse Energy)

Summary

Elena Echeverria CBB Annual Meeting July 22/2023

Overview	Intro	QE	RHEED	XPS	MTE	Summary
	00000					

Normalized brightness is defined by:

$$B_n = \frac{2m_ec^2I}{\sigma_x^2 MTE}$$

 $\textbf{\textit{I}} \rightarrow$ Beam Current: Quantum Efficiency, laser fluency, lifetime

 $MTE \rightarrow$ Mean Transverse Energy: Intrinsic Momentum spread + roughness + laser heating + ...

イロト イヨト イヨト イヨト

July 22/2023

Overview	Intro	QE	RHEED	XPS	MTE	Summary
	00000					

Normalized brightness is defined by:

 $\textbf{\textit{I}} \rightarrow$ Beam Current: Quantum Efficiency, laser fluency, lifetime

$$B_n = \frac{2m_ec^2I}{\sigma_x^2 MTE}$$

 $MTE \rightarrow$ Mean Transverse Energy: Intrinsic Momentum spread + roughness + laser heating + ...

イロト イポト イヨト イヨ

Goal:

Photocathodes with high QE and low MTE

July 22/2023

Overview	Intro	QE	RHEED	XPS	MTE	Summary
	00000					

Goal: Photocathodes with high QE and low MTE

 $EQE = \frac{Average \ e^-}{Incident \ photons}$

Photocathode

Overview	Intro	QE	RHEED	XPS	MTE	Summary
	00000					

Goal: Photocathodes with high QE and low MTE

 $EQE = \frac{Average \ e^-}{Incident \ photons}$

Candidates: (Bi)Alkali antimonides thin films (Cs₃Sb, K₂CsSb, Na₂KSb...)

Overview	Intro	QE	RHEED	XPS	MTE	Summary
	00000					

Goal: Photocathodes with high QE and low MTE (Mean Transverse Energy)

CBB Annual Meeting

Overview Intro	QE	RHEED	XPS	MTE	Summary
0000	o ooo				

Goal: Photocathodes with high QE and low MTE (Mean Transverse Energy)

Overview	Intro	QE	RHEED	XPS	MTE	Summary
	00000					

Deposition System→ Molecular Beam Epitaxy (MBE)

Overview	Intro	QE	RHEED	XPS	MTE	Summary
O	00000	●000	0000	0000	00000	
Overvie	\\/					

1 Intro

Quantum Efficiency (QE)

- 3 RHEED (Reflection high energy electron diffraction)
- 4 XPS (X-ray photoemission spectroscopy)
- 5 MTE (Mean Transverse Energy)

6 Summary

Elena Echeverria CBB Annual Meeting July 22/2023

Overview	Intro	QE	RHEED	XPS	MTE	Summary
		0000				

Quantum Efficiency (QE)

in situ most used technique to define the cathode growth

CBB Annual Meeting

Overview	Intro	QE	RHEED	XPS	MTE	Summary
O	00000	○○●○	0000	0000	00000	

Spectral Response

Spectral Response

Elena Echeverria CBB Annual Meeting July 22/2023

10

Overview	Intro	QE	RHEED	XPS	MTE	Summary
O	00000	000●	0000	0000	00000	

Oxidation Experiments

Oxidation Experiments

Overview	Intro	QE	RHEED	XPS	MTE	Summary
O	00000	0000	●000	0000	00000	
Overvier						

2 Quantum Efficiency (QE)

3 RHEED (Reflection high energy electron diffraction)

4 XPS (X-ray photoemission spectroscopy)

5 MTE (Mean Transverse Energy)

Summary

الله المراجع ال المراجع المراجع

July 22/2023

Overview	Intro	QE	RHEED	XPS	MTE	Summary
			0000			

Reflection high energy electron diffraction

$\mathsf{RHEED} \to \mathsf{Crystal}\ \mathsf{Structure}$

phosphor screen

https://doi.org/10.1117/12.2585204

Source	Electron Gun
Energy	1 keV <e<30 kev<="" td=""></e<30>
Depth	surface
Angle	< 5°

July 22/2023

Overview	Intro	QE	RHEED	XPS	MTE	Summary
			0000			

$\mathsf{RHEED} \to \mathsf{Diffraction}\ \mathsf{Patterns}$

Ichimiya & Cohen (2004) Reflection High-Energy Electron Diffraction doi:10.1017/CBO9780511735097

July 22/2023

Elena Echeverria

CBB Annual Meeting

Overview	Intro	QE	RHEED	XPS	MTE	Summary
			0000			

$\mathsf{RHEED} \to \mathsf{More} \ \mathsf{Diffraction} \ \mathsf{Patterns}$

https://phas.ubc.ca/~berciu/TEACHING/ PHYS502/PROJECTS/RHEED.pdf

NSI.

(日) (四) (三) (三)

Elena Echeverria CBB Annual Meeting July 22/2023

Overview O	Intro 00000	QE 0000	RHEED 0000	XPS ●000	MTE 00000	Summary
Overvi	ew					

- 2 Quantum Efficiency (QE)
- 3 RHEED (Reflection high energy electron diffraction)
- 4 XPS (X-ray photoemission spectroscopy)
- 5 MTE (Mean Transverse Energy)
- Summary

Overview	Intro	QE	RHEED	XPS	MTE	Summary
				0000		

$XPS \rightarrow$ Elemental composition/chemical state of elements

CBB Annual Meeting

o 00000 0000 0000 0000 0000 0000	Overview	Intro	QE	RHEED	XPS	MTE	Summary
					0000		

$XPS \rightarrow Elemental \ composition/chemical \ state \ of \ elements$

Overview	Intro	QE	RHEED	XPS	MTE	Summary
				0000		

Two types of spectra are collected

Elena Echeverria

CBB Annual Meeting

Overview	Intro	QE	RHEED	XPS	MTE	Summary
				0000		

In the case of Cesium Antimonide

$CsSb vs Cs_3Sb$

1 Intro

- 2 Quantum Efficiency (QE)
- 3 RHEED (Reflection high energy electron diffraction)
- 4 XPS (X-ray photoemission spectroscopy)
- **5** MTE (Mean Transverse Energy)

6 Summary

Overview	Intro	QE	RHEED	XPS	MTE	Summary
o	00000	0000	0000	0000	0●000	

MTE (Mean Transverse Energy)

- Quantifies the angular spread of the electron beam coming off from the cathode
- Along with the spot size of the photoemitting laser, limits the beam brightness

Overview	Intro	QE	RHEED	XPS	MTE	Summary
					00000	

Beamline \rightarrow MTE meter setup at Cornell

(日) (四) (三) (三)

Elena Echeverria

Overview	Intro	QE	RHEED	XPS	MTE	Summary
					00000	

x-y components of the momentum

An aperture scan is used to record the beam image on a screen to subsequently recover the transverse phase space of the emitted beam

From here, the emittance is measured and therefore the MTE is calculated

$$\epsilon_n = \sigma_x \sqrt{\frac{MIE}{m_e c^2}}$$

July 22/2023

3 1 4 3

Overview	Intro	QE	RHEED	XPS	MTE	Summary
O	00000	0000	0000	0000	0000●	

Phase Space Images

Taken from William Li, Theme 1 meeting, April 4th 2022

& 🏶

July 22/2023

Image: A matching of the second se

Overview	Intro	QE	RHEED	XPS	MTE	Summary
O	00000	0000	0000	0000	00000	●○○
Overview	J					

1 Intro

- 2 Quantum Efficiency (QE)
- 3 RHEED (Reflection high energy electron diffraction)
- 4 XPS (X-ray photoemission spectroscopy)
- 5 MTE (Mean Transverse Energy)

6 Summary

Overview	Intro	QE	RHEED	XPS	MTE	Summary
						000

Summary

Elena Echeverria CBB Annual Meeting メロト メポト メミト メミト

Overview	Intro	QE	RHEED	XPS	MTE	Summary
						000

Thanks! Questions?

July 22/2023