Sustainability studies for the Cool Copper Collider

Martin Breidenbach¹, Brendon Bullard¹, Emilio Nanni¹, Dimitris Ntounis^{1,2}, Caterina Vernieri^{1,2} 1) SLAC National Accelerator Laboratory, 2) Stanford University

CCTA Workshop Sept. 1, 2023

NATIONAL ACCELERATOR LABORATORY **Special Thanks to Brendon Bullard for Slides**

 $\exists \mathbf{r} \times \mathbf{i} \vee \rangle$ hep-ex > arXiv:2307.04084

High Energy Physics – Experiment

[Submitted on 9 Jul 2023]

A Sustainability Roadmap for C³

Introduction

- + Community consensus that Higgs factory should be the next major collider after HL-LHC
- Climate change poses i si ficant threat to humanity and health of Earth's ecosystems
 - How can we continue to d and operate large colliders sustainably?
 - Evaluate emissions due to construction and operation, compare to other Higgs factory options on the basis of physics reach

+ The Cool Copper Collider (C³) is a linear e⁺e⁻ collider concept with a compact 7-8 km footprint • Enabled by normal conducting copper RF cavities, low surface fields/breakdown rates \rightarrow high gradient!

C³ Main Linac Cryomodule

9 m (600 MeV/ 1 GeV)

Comparison of Parameters-

Collider	NLC	CLIC	ILC	C^3	C^3
CM Energy [GeV]	500	380	250 (500)	250	550
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
Gradient $[MeV/m]$	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Length [km]	23.8	11.4	20.5(31)	8	8
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Site Power [MW]	121	168	125	$\sim \! 150$	$\sim \! 175$
Design Maturity	CDR	CDR	TDR	pre-CDR	pre-CDR

Physics reach

Δк/к_SM [%]

Showmass 2021 energy frontier report

Sensitivity comparison for each collider concept-

- Taking into account effects of luminosity and polarization to evaluate measurement sensitivity:
 - C³/ILC-250 performs similarly to CLIC-380, C³/ILC-550 outperforms CLIC-380
 - C³/ILC-550 matches or exceeds physics reach of FCC in all coupling sensitivity metrics
 - Compare colliders based on their total carbon footprint weighted by precision of measurement

				HL-LHC +			
Relative Precision (%)	HL-LHC	CLIC-380	ILC-250/C ³ -250	ILC-500/C ³ -550	FCC 240/360	CEPC-240/360	
hZZ	1.5	0.34	0.22	0.17	0.17	0.072	$\sum w_{k} \left(\frac{\delta \kappa}{\delta \kappa} \right)$
hWW	1.7	0.62	0.98	0.20	0.41	0.41	$ \delta\kappa\rangle = \frac{\lambda}{i} \frac{m_i}{\kappa} \frac{\kappa}{i}$
$hbar{b}$	3.7	0.98	1.06	0.50	0.64	0.44	$\left(\frac{i}{i}\right) = \frac{i}{i}$
$h au^+ au^-$	3.4	1.26	1.03	0.58	0.66	0.49	$\langle \kappa \rangle = \sum w_i$
hgg	2.5	1.36	1.32	0.82	0.89	0.61	$\frac{1}{i}$
$hcar{c}$	-	3.95	1.95	1.22	1.3	1.1	
$h\gamma\gamma$	1.8	1.37	1.36	1.22	1.3	1.5	
$h\gamma Z$	9.8	10.26	10.2	10.2	10	4.17	$\left(\frac{\partial \kappa}{\kappa}\right)_{\text{III}}$ I IIC $-\left(\frac{\partial \kappa}{\kappa}\right)_{\text{III}}$ I IIC III
$h\mu^+\mu^-$	4.3	4.36	4.14	3.9	3.9	3.2	$W = \frac{\langle k \rangle_{\text{HL}-\text{LHC}}}{\langle \delta u \rangle}$
htī	3.4	3.14	3.12	2.82/1.41	3.1	3.1	$\left(\frac{O\kappa}{\kappa}\right)_{\rm HI}$ -I HC+HE
hhh	0.5	0.50	0.49	0.20	0.33	-	
$\Gamma_{ m tot}$	5.3	1.44	1.8	0.63	1.1	1.1	
Weighted average	_	0.94	0.86	0.45	0.59	0.49	

Sustainability studies for the Cool Copper Collider

Snowmass Higgs physics topical group report

Tunnel construction for FCC-ee

+ <u>Snowmass climate impacts report</u> analyzes FCC construction using bottom-up and top-down approaches • Only takes into account main tunnel (excludes access shafts, experimental halls, etc.)

Bottom-up approach Top-down approach Driven by manufacture of concrete Includes secondary emissions (e.g. construction machinery) FCC inner/outer diameter 5.5/6.5m Rough estimates of 5-10k kg CO₂ per Concrete is 15% cement, which meter of tunnel length releases 1 ton CO₂ per ton

237 kton CO₂ (for 7 mil m³ spoil, concrete density 1.72 ton/m³)

Roughly factor of 2 difference between base material emissions and secondaries

With 5k kg CO₂/m, yields **500 kton CO₂**

More recent update on FCC civil engineering (<u>L. Broomiley</u>)

Collider project inputs

- ARUP analysis indicates 80% of construction emissions arise from materials (A1-A3), remaining from material transport and construction process
 - More thorough than Snowmass report rely on it for inputs for other Higgs factory parameters!
 - Approximate global warming potential (GWP) for tunnels ~6 tn/m for CLIC/ILC, apply for circular collider concepts

Project	Main tunnel length (km)	GWP (tCO ₂ e)				
		Main tunnel	+ Other	+ A4,A5		
FCC	90.6	545	700 (+30%)	875 (+25%)		
CEPC	100	600	780 (+30%)	975 (+25%)		
ILC	13	80	200	270		
CLIC	11	70	105	125		

C³ Excavation models

Bored tunnel

Total of 600k m³ total excavation, **225k m³ concrete**

 200k m³ of excavation comes from tunnel volume, concretes include all site requirements!

Sustainability studies for the Cool Copper Collider

Cut and cover

Preferred option for reduced construction costs and emissions (but not required)

- Much of the displaced earth is pushed on top (shielding), only ~40k m³ must be transported away
- Same amount of concrete required as for tunnel, assume emissions can be reduced to 65 kton CO₂

Operations emissions

- Driven by carbon footprint of energy production used during operations
 - Site power requirements have room for optimization, consider nominal beam parameters
 - Carbon intensity (equivalent emissions of gCO₂/kWh) key parameter, depends on location/power sources
 - "The United States has set a goal to reach 100 percent carbon pollution-free electricity by 2035" (from April 2021 US emissions target report - is this a realistic assumption?

Sustainability studies for the Cool Copper Collider

National grid storage capacity expected to reach 120 GWh by 2040 -

Siting options for C³

Carbon intensity projections

(Note: Silicon Valley Clean Energy can provide 175 MW of clean energy in 2-3 year timeframe)

Sustainability studies for the Cool Copper Collider

\rightarrow both estimations using projections from US and international agencies give comparable projections

Energy consumption and emissions

Total energy consumption over full run time

C³ and CEPC consumption driven by long run times

Sustainability studies for the Cool Copper Collider

Precision Weighted Consumption

Differentiation in environmental impact driven by scientific output

Impacts of construction

Emissions from construction

Project	Main tunnel length (km)	GWP (kton CO ₂ e)				
Flojeci		Main tunnel	+ other structures	+ A4-A5		
FCC	90.6	578	751	939		
CEPC	100	638	829	1040		
ILC	13.3	97.6	227	266		
CLIC	11.5	73.4	98	127		
C ³	8.0	133	133	146		

Precision weighted total carbon impact

C³ power optimizations

Possible options for beam power reduction with several different approaches

Impact on luminosity and ultimate physics performance not yet evaluated

RF System	Cryogenics	Total
	0190801100	IUtal
(MW)	(MW)	(MW)
40	60	100
31	60	91
28	42	70
30	45	75
34	45	79
13	24	37
	(MW) 40 31 28 30 34 13	Image: System Image: System (MW) (MW) 40 60 31 60 28 42 30 45 34 45 13 24

Emissions due to operations have clear road toward further reduction since clean energy in California is already accessible, operations emissions of C^3 can be virtually eliminated (limited by emissions from manufacturing solar panels)

Carbon capture in concrete can offset emissions, but scalability not yet demonstrated \rightarrow great potential for green Higgs factory with C³!

Bunch Spacing

- + Beam power can be increased for additional luminosity or higher current shorter RF pulse
- A? (8.5X increase?)

Caution: Requires serious investigation of be dynamics - great topic for C³ Demonstration

- + Impact:
 - More damping may be needed
 - Higher power per meter part of upgrade to 55
 - Detector 3ns bunch spacing good, 1 ns spacir
 - <1 ns bunch spacing significant impact on det

+ C3 has a relatively low current for 250 GeV CoM (0.19 A) - Could we push to match CLIC at 1.66

+ Pulse length and rep. rate are also options (rep. rate is challenging from a power perspective)

eam	Parameter	Units	Baseline	High-Lumi
R&D	Energy CoM	GeV	250	250
	Gradient	MeV/m	70	70
	Beam Current	Α	0.2	1.6
	Beam Power	MW	2	16
50 GeV	Luminosity	x10 ³⁴	1.3	10.4
	Beam Loading		45%	87%
	RF Power	MW/m	30	125
ιεςτοι	Site Power	MW	c ~150	~180
			-L-	

Pulse Length

+ Baseline -> Thermal load 2200 W/m @ 120 Hz

- 70 MeV/m 700 ns (120 MeV/m 250 ns) flattop
- ~1.5 microsecond rf pulse, ~30 (80) MW/m
 - With 45% beam loading
 - **High RF-beam efficiency even with low** current 0.2 A (0.33 A)
- Conservative 2.3X enhancement from cryo
 - No pulse compression
- Ramp power to reduce reflected power
- Flip phase at output to reduce thermals
- <2.5 kW/m at 120 Hz

SLAC

FLS 2023

Sustainability studies for the Cool Copper Collider

Pulse Length

- Double the pulse length and half the repetition rate?
- + Reduce to 1700 W/m, but pulsed heating goes up (both below 50K)

700 ns, 70 MeV/m

Sustainability studies for the Cool Copper Collider

17

RF Source Efficiency

- Need to include: Modulator, klystron and magnets
- Recent progress reported at CCTA
- Permanent magnet solenoid will have significant impact

Efficiency

Sustainability studies for the Cool Copper Collider

High Efficiency klystrons project at CERN is targeted to improve

micro Perveance (µA/V^{1.5})

https://indico.slac.stanford.edu/event/7467/contributions/6129/

Pulse Compression

+ Reduce fill time of accelerator, increase pulse length of rf source -> Need high Qo

Normal Conducting Pulse Compressor

Compact RF pulse compression

Powering the FLASH-VHEE linac

Two polarized modes in a single high-Q cavity

4 cm

• HE₁₁-mode in the corrugated cylindrical cavity achieves a Q₀ of 405,000 with a cavity length of 0.87 m.

300

_____ ອິ 200

K200 Solid State Modulator System from ScandiNova and Canon Klystron

- 11.424 GHz
- Peak power 6 MW
- Pulse length 4 μs

Coupler designed with an intermediary low-Q TE₁₁ cavity

- small aperture to the compressor minimizes the perturbation to the HE_{11} mode
- four irises into the low-Q cavity enhance the coupling factor
- Compressed pulse reaches 19 MW peak power in a 200 ns flattop

Improved for engineering design $Q_0 = \frac{2391.448a^3 f^{5/2}L}{a^3 f^2 + 121.126L}$

SLAC |TID TECHNOLOGY INNOVATION DIRECTORATE | Emma Snively

https://indico.slac.stanford.edu/event/7467/contributions/5839/

High Temperature Superconductor Pulse Compressor

doi/jacow-ipac2023-wepa183/index.html

Conclusions

- + C^3 is a candidate for a compact linear e^+e^- Higgs factory with low carbon impact
- + Lower energy consumption over circular colliders to achieve same (or better) physics goals • C³ physics reach enhanced by polarized electrons, ability to access $\sqrt{s} = 550$ GeV running mode
- + Significantly reduced emissions associated to construction than alternative Higgs factory concepts • Emissions from conventional concrete manufacturing, factor 4-8 lower emissions for C³ than FCC
- + Can be built anywhere, but compelling to build in US due to expected grid electrification • By 2040, carbon intensity of electricity generation to be on par with EU, far below Japan and China
- More precision in auxiliary systems to refine operations estimates

Thank you for your attention - stay tuned!

Backup -

Collider project inputs

Linear Collider Options

S. Evans

1. CLIC Drive Beam

5.6m internal dia. Geneva. (380GeV, 1.5TeV, 3TeV)

Reference: CLIC Drive Beam tunnel cross section, 2018

Reference: CLIC Klystron tunnel cross section, 2018

ARUP

Arched 9.5m span. Japan. (250GeV)

3. ILC

Reference: Tohoku ILC Civil Engineering Plan, 2020

Sustainability studies for the Cool Copper Collider

22

Projected daily energy load curves by region (US)

Hourly U.S. electricity generation and load by fuel for selected cases and representative years billion kilowatthours

Data source: U.S. Energy Information Administration, Annual Energy Outlook 2023 (AEO2023) Note: Negative generation represents charging of energy storage technologies such as pumped hydro storage and battery storage. Hourly dispatch estimates are illustrative and are developed to determine curtailment and storage operations; final dispatch estimates are developed separately and may differ from total utilization as this figure shows. Standalone solar photovoltaic (PV) includes both utility-scale and end-use PV electricity generation.

Sustainability studies for the Cool Copper Collider

eia

Additional operating parameters -

Higgs factory	CLIC [29]	ILC [28]	C^{3} [3]	CEPC [30],[31]	FCC-ee [32],[24]
Center-of-mass energies considered \sqrt{s} [GeV]	380	250,500	250,550	$240,\!360$	240, 340-350, 365
Site Power P [MW]	110	111 at 250 GeV	~ 150 at 250 GeV	340	290 at 240 GeV
		173 at 500 GeV	~ 175 at 550 GeV		$\sim 350 \text{ at } 340 - 350, 365 \text{ GeV}$
Annual collision time T_{annual} [10 ⁷ s/year]	1.20	1.60	1.60	1.30	1.08
Operational Efficiency ϵ	0.75	0.75	0.75	0.60	0.75
Site power fraction during downtime κ	0.3	0.5	0.3	0.5	0.5
Running time $T_{\rm run}$ [years]	8	11 at 250 GeV 9 at 500 GeV	10 at 250 GeV 10 at 550 GeV	10 at 240 GeV 5 at 360 GeV	$\begin{array}{c} 3 \ {\rm at} \ 240 \ {\rm GeV} \\ 1 \ {\rm at} \ 340-350 \ {\rm GeV} \\ 4 \ {\rm at} \ 365 \ {\rm GeV} \end{array}$
Instantaneous Luminosity/IP \mathcal{L}_{inst} [$\cdot 10^{34}$ cm ⁻² s ⁻¹]	2.3	1.35 at 250 GeV 1.8 at 500 GeV	1.3 at 250 GeV 2.4 at 550 GeV	8.3 at 240 GeV 0.83 at 360 GeV	$\begin{array}{c} 8.5 \ {\rm at} \ 240 \ {\rm GeV} \\ 0.95 \ {\rm at} \ 340 - 350 \ {\rm GeV} \\ 1.55 \ {\rm at} \ 365 \ {\rm GeV} \end{array}$
Target Integrated Luminosity \mathcal{L}_{int} [ab ⁻¹]	1.5	2 at 250 GeV 4 at 500 GeV	2 at 250 GeV 4 at 550 GeV	20 at 240 GeV 1 at 360 GeV	$\begin{array}{c} 5 \text{ at } 240 \text{ GeV} \\ 0.2 \text{ at } 340 - 350 \text{ GeV} \\ 1.5 \text{ at } 365 \text{ GeV} \end{array}$

