

A (Possible) High Gradient Linac at MSU/FRIB

Paul Guèye, Kei Minamisono

Alain Lapierre, Ambar Rodriguez Alicea

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Disclaimer

- This project is not endorsed by FRIB/MSU!
- Side effort by several people to evaluate a possible e[±]-Rare Isotope compact facility for nuclear physics & nuclear astrophysics research

Workshop, Symposia & Brainstorming Sessions

- North America Storage Rings & Neutron Captures Workshop
 - June 28-30, 2021
 - https://meetings.triumf.ca/event/235/overview
- APS/DNP symposia
 - October 11-14, 2021
 - JF: Advances and Opportunities in Polarized Targets and Beams I
 - KF: Advances and Opportunities in Polarized Targets and Beams II

Brainstorming sessions

- March 25, 2022 and April 01, 2022
- Participants: Eric Voutier, Toshimi Suda, Maya Wallach, Claude Marchand, Dominic Marchand, Joe Grames, Kei Minamisono, Peter Ostroumov, Kent Paschke, Ryan Richards, Or Hen, Alain Lapierre, Michael Kohl

e[±]-RIB workshop

- September 5, 2023
- Participants: possibly 43

Outline

- Probing nuclei with electromagnetic probes
 - Electron/Positron scattering
 - Jefferson Lab electron (CEBAF)/positron (LERF) beams
- Rare Isotopes
 - Facility for Rare Isotope Beams
 - RI masses and nuclear radii ... and storage rings
- Possible concept for a e[±]-Rare Isotope compact facility at FRIB

One Primary Focii: Nuclear Radii

Facility for Rare Isotope Beams

Electron Scattering Experiments

Nuclear Tomography? What About Polarization?

Meson electro-production

$$\frac{d\sigma_{v}}{d\Omega_{\eta}} = \frac{|\mathbf{k}|}{k_{\gamma}^{cm}} P_{\alpha} P_{\beta} \{ R_{T}^{\beta\alpha} + \varepsilon_{L} R_{L}^{\beta\alpha} + \left[2\varepsilon_{L} \left(1 + \varepsilon \right) \right]^{1/2} \left({}^{c} R_{TL}^{\beta\alpha} \cos \phi_{\eta} + {}^{s} R_{TL}^{\beta\alpha} \sin \phi_{\eta} \right) \\
+ \varepsilon \left({}^{c} R_{TT}^{\beta\alpha} \cos 2\phi_{\eta} + {}^{s} R_{TT}^{\beta\alpha} \sin 2\phi_{\eta} \right) \\
+ h \left[2\varepsilon_{L} (1 - \varepsilon) \right]^{1/2} \left({}^{c} R_{TL'}^{\beta\alpha} \cos \phi_{\eta} + {}^{s} R_{TL'}^{\beta\alpha} \sin \phi_{\eta} \right) \\
+ h (1 - \varepsilon^{2})^{1/2} R_{TT'}^{\beta\alpha} \},$$
(12)

G. Knöchlein, D. Drechsel, L. Tiator Z. Phys. **A352**, 327-343 (1995)

3D nucleon tomography!! (DVCs, parton distributions ...)

Table 1. Polarization observables in pseudoscalar meson electroproduction. A star denotes a response function which does not vanish but is identical to another response function via a relation in App. A

	_			Target			Recoil					Targ	et + R	lecoil			
1	β		-		_	x'	y'	z'	x'	x'	x'	y'	y'	y'	z'	z'	z'
	α		x	y	z			-	x	y	z	x	y	z	x	y	z
5	Т	R_{T}^{00}	0	R_T^{0y}	0	0	$R_T^{y'0}$	0	$R_T^{x'x}$	0	$R_T^{x'z}$	0	*	0	$R_T^{z'x}$	0	$R_T^{z'z}$
Ś	L	$\hat{R_L}$	0	$R_L^{\hat{0}y}$	0	0	*	0	$R_L^{x'x}$	0	$R_L^{x'z}$	0	*	0	*	0	*
	^{c}TL	${}^{c}R_{TL}^{00}$	0	${}^{c}R_{TL}^{\overline{0}y}$	0	0	*	0	$^{c}R_{TL}^{x^{\prime}x}$	0	*	0	*	0	$^{c}R_{TL}^{z'x}$	0	*
	^{s}TL	0	${}^{s}R_{TL}^{0x}$	0	${}^{s}R_{TL}^{0z}$	${}^{s}R_{TL}^{x'0}$	0	${}^{s}R_{TL}^{z'0}$	0	*	0	*	0	*	0	*	0
2	^{c}TT	${}^{c}R_{TT}^{00}$	0	*	0	0	*	0	*	0	*	0	*	0	*	0	*
5	^{s}TT	0	${}^{s}R_{TT}^{0x}$	0	${}^{s}R_{TT}^{0z}$	${}^{s}R_{TT}^{x'0}$	0	${}^{s}R_{TT}^{z'0}$	0	*	0	*	0	*	0	*	0
	$^{c}TL'$	0	$^{c}R_{TL'}^{0x}$	0	$^{c}R^{0z}_{TL'}$	${}^{c}R_{TL'}^{x'0}$	0	${}^{c}R_{TL'}^{z'0}$	0	*	0	*	0	*	0	*	0
	$^{s}TL'$	${}^{s}R^{00}_{TL'}$	0	${}^{s}R^{0y}_{TL'}$	0	0	*	0	${}^{s}R_{TL'}^{x'x}$	0	*	0	*	0	${}^{s}R_{TL'}^{z'x}$	0	*
	TT'	0	$R_{TT'}^{0x}$	0	$R^{0z}_{TT'}$	$R_{TT'}^{x'0}$	0	$R_{TT'}^{z'0}$	0	*	0	*	0	*	0	*	0

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University polarized

Thomas Jefferson National Accelerator Facility (Jefferson Lab)

Facility for Rare Isotope Beams

JLab Beam Parameters

Hall A	Hall B																		
Beam Property Nominal Value/Range Over 8						nporal Stability	Beam Property			Nominal Value/Range				Tem	poral Stability over 8 hours				
ot size at target (rms) [µm] Horizontal < 250 Vertical < 200			н	orizontal ~ 20 Vertical ~ 20	Spot size measured by 2H01A harp (rms) [µm]				< 100 for 1 GeV - 6 GeV ad < 200 for 7 GeV - 11 GeV				peri adjus	iodic measurement and tment can enforce lower bound					
Angular divergence at target [µrad] <20			-	<2	Angular divergence a	t target [µrad]			< 100			gov	erened by the formula: emittance/(spot size)						
urrent [μAmp] 1-120 ⁴			x	10%	Current [nAmp]						1 - 160 *		< 59	% for currents > 5 nAmp					
Charge per bunch [fCoul]	ber bunch [fCoul] 4 - 480				10%	Charge per bunch [fCoul]			4 ×10 ⁻³ - 0.64				< 59	% for currents > 5 nAmp					
Bunch repetition rate [MHz]	inch repetition rate [MHz] 240 5*			_	NA	Bunch repetition rate	e [MHz]			249.5*					NA				
Beam position	offsets parallel to diagnostic girder axis			< 40	μm (slow lock) μm FFB (at 60Hz)	Beam position			as required within ± 2 mm of beam axis as measured on IPM2H00/IPM2H01				< 0.1	1mm for currents above 30 nA					
	Pass-1	Pass-2	Pass-3 Pass	-4 Pass-5		Energy sprea		Pass-1 Pass			Pass-2	Pass-3	Pass-4 Pass-5	~	10% of nominal (linac				
Energy spread [*] (rms)	< 10 ⁻⁴	< 10 ⁻⁴	<10 ⁻⁴ 3×1	0 ⁻⁴ 5×10 ⁻⁴	~109	6 of nominal (linac		- DHI 0001 - 1997 34			< 10 ⁻⁴ < 10 ⁻⁴ < 10 ⁻⁴			4 3×10 ⁻⁴ 5×10 ⁻⁴		crested)			
Beam direction	± 300 µrad (rasterized at 3 mm x 3 mm)					rad (position lock)	Beam direction		ambient field and position			itions of beam on target dump		stable to < 20 µrad					
Energy range [GeV]	1-11				NA	Energy range [GeV]			1 - 11				NA						
Energy accuracy (rms)	3×10 ⁻³				stable	Energy accuracy [♥] (rm	rms)			3×10 ⁻³			<	< 2×10 ⁻⁴ (slow locks) 3×10 ⁻⁵ (fast feedback)					
▼ Beam polarization	up to 85%			Hall C								Hall D							
Charge asymmmetry	< 0.1%				Beam Property			Nominal Value/Range Temporal Stability over 8 hours				У	Beam Property		Nominal Value/Range	Temporal Stability over 8 hours			
Background beam halo <0.1%						Pass-1 Pass-2 Pass-3			3 Pass-4 Pass-5				7						
Beam availability (including RF trips)			60%			Spot size (X/Y)	at pivot (rms) [μm]	100-190	150-260	175-300	200-27	5 230-5	00	20		Spot size at targ	;et [*] (rms) [μm]	Vertical < 500	Vertical ~ 100
						Angular diverge	nce at target [µrad]	±25				_	NA		Angular divergence at target [µrad]		< 15	<1	
						Current [µAmp]	th [fCoul]	2.5 - 150			o#		_	10%	_	Current [nAmp]	(m 24/2 494)	1 - 2000 [#]	10%
						Runch repetitio	n rato [MWz]				*		_	NA	-	Charge per buncl	h [fCoul]	4×10 ⁻³ - 8	10%
						buildin repetitio	in race [ivinz]	offs	ets paralle	el to diagi	nostic giro	der axis	<	< 40 µm (slow lock)		Runch ronotition	rato [MHz]	240 5*	NA
						Beam position		within 2.5 m		n 2.5 mn	n radius		< 2	< 20 µm FFB (at 60Hz)				249.5	
		Energy spread [*]				< 10 ⁻⁴	< 10 ⁻⁴	< 10 ⁻⁴	3×10	4 5×10) ⁻⁴ ~10	0% of nominal (lin	ac	Beam position		±1mm	< 40 µm (with 5C11B lock)		
			Beam direction	beam	beam divergence, dump aperture an			and raster	raster < 20 urad (position lock)		ck)	Energy spread [®] (rms)		2×10 ⁻³ - 3×10 ⁻³	~ 10% of nominal (linac crested)				
						Energy range [0	ieV]	combine	to limit in	1 - 11	ngies und	er 800 μr	ad	NA		Beam direction		± 30 μrad	< 2 µrad (active collimator lock)
						Energy accuracy	(rms)			3×10 ⁻¹	3			stable		Energy range [Ge	۷]	8.8 - 12.1	NA
					Beam polarizati	Beam polarization $^{ abla}$			up to 859				stable			(rms)	3×10 ⁻³	stable	
						Charge asymmr	netry			< 0.1%	5			stable		Background been	m halo	<0.1%	etable
						Background bea	ım halo	less t	han 10 ⁻⁴ d	of integra	l of Gauss	sian core		stable		Background bear		< 0.1%	stable
Beam					Beam availabili	y (including RF trips) 60%			stable				Beam availability	(including RF trips)	60%	stable			

Facility for Rare Isotope Beams

Polarized Positron Beams – 20 years later! (... possible scheme for the EIC)

<u>Polarized Electrons for Polarized Positrons</u> D. Abbott *et al.*, PRL **116**, 214801 (2016)

- Experiment in the CEBAF injector
- Highly polarized positrons
- · 80% @ 6.5 MeV
 - R&D for EIC
- Last PhD @ HU (A. Adeyemi, 2016)

Facility for Rare Isotope Beams

Future of JLab

Solenoidal Large Intensity Device (SoLID)

- Precision 3D momentum imaging in the valence quark region
- Exploring the origin of the proton mass and gluonic force in the non-perturbative regime
- Beyond Standard Model searches complementary to Möller

LERF-CEBAF Injection JLab PAC51 21/37 (57%) proposals/LOIs for e⁺!!

INJ to CEBAF

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Facility for Rare Isotope Beams (<u>www.frib.msu.edu</u>; start: May 10, 2022)

Facility for Rare Isotope Beams

Facility for Rare Isotope Beams Offers Discovery Potential

- FRIB is a US Department of Energy Office of Science User facility
 - Open to researchers from around the world based on scientific merit
- FRIB's key feature is 400 kW beam power • 8 pμA or 5 x 10¹³ ²³⁸U/s
- Experiments with fast (200 MeV/u), stopped (trapped), and reaccelerated beams (0.6 to 10 MeV/u)
- Separation of isotopes in-flight provides
 - Fast development time for any isotope
 - Beams of all elements and short half-lives
- Isotope harvesting capability from beam dump water)

Thomas Glasmacher, FRIB Laboratory Director

FRIB400 Scientific Reach Extended

Facility for Rare Isotope Beams

Polarization in Heavy Ion Physics

Facility for Rare Isotope Beams

Rare Isotope Nuclear Radii

Ambar Rodriguez Alicea, GS

Facility for Rare Isotope Beams

Laser Spectroscopy @ FRIB: **BECOLA Facility**

Facility for Rare Isotope Beams

Charge Radii of ^{54,55,56}Ni Reveal a Surprising Similarity to ⁴⁸Ca at *N* = 28

- Discontinuity, so called the kink structure, in a chain of charge radii is commonly observed at all Magic numbers.

However, what the strength (steepness) of the kink implies is an open question.
Kink at ⁵⁶Ni was investigated, which is know to be "soft" as doubly-Magic nucleus.

Isotope shifts of hyperfine spectra relative to stable ⁶⁰Ni were measured for the neutron-deficient ^{54,55,56}Ni by laser spectroscopy, from which differential mean square charge radii $\delta \langle r^2 \rangle$ were extracted.

Charge radii were deduced from the $\delta(r^2)$ and radius of stable ⁶⁰Ni. Kink at the neutron-number N = 28 is clearly observed.

F. Sommer et al., PRL 129, 132501 (2022)

FRIE

Facility for Rare Isotope Beams

Need absolute charge radii

- Model independent, R can be determined with ~ 0.005 fm
- Sensitive to $\delta \langle r^2 \rangle$ and requires reference to deduce absolute radius: $R^2 = R_{ref}^2 + \delta \langle r^2 \rangle$
 - R_{ref} can be evaluated from e-scattering and μ -capture experiments.
 - but R_{ref} is not always available with high enough precision we want.

• Using King plot, *k* and *F* can be experimentally evaluated,

- IF there are \geq 3 (stable) isotopes of the element, whose *R* are know.
- otherwise need to rely on atomic theories
 - Typically with a few ~ 10% uncertainty
 - ab-initio is feasible for 5 electron systems so far.

• Once *k* and *F* are known, they can be applied to deduce unknown $\delta \langle r^2 angle$

- In general, $\delta \langle r^2 \rangle$ is replaced by $\delta \langle r^2 \rangle + \tilde{c_2} \delta \langle r^4 \rangle + \tilde{c_3} \delta \langle r^6 \rangle + \cdots$
 - Contribution is very small and difficult to determine
- Need absolute *R* of stable as well as radioactive but near stable nucleus to go further away from stable isotopes, where there is enhanced chance of discovery.

Storage Rings & Mass Measurements

Experimental Storage Ring (ESR) in Darmstad

Facility for Rare Isotope Beams

Electron/Rare Isotopes Systems

Facility for Rare Isotope Beams

Some numbers ...

T. Suda and H. Simon, Prog. Part. Nucl. Phys., 96, 1-31 (2017)

Estimate for the required luminosities for different studies in colliding beam kinematics. It is assumed that the maximum running time shall not exceed four weeks.

Reaction	Deduced quantity	Target nuclei	Luminosity \mathcal{L} cm ⁻² s ⁻¹
Elastic scattering at small q	r.m.s. charge radii	Light Medium	10 ²⁴
First minimum in elastic form-factor	Density distribution with 2 parameters	Light Medium Heavy	10 ²⁸ 10 ²⁶ 10 ²⁴
Second minimum in elastic form-factor	Density distribution with 3 parameters	Medium Heavy	10 ²⁹ 10 ²⁶
Giant resonances	Position, width, strength, decays	Medium Heavy	10 ²⁸ 10 ²⁸
Quasi-elastic scattering	Spectroscopic factors, spectral function, momentum distributions	Light	10 ²⁹

	Ee (GeV)	Beam Current	Ne/s	Target (/cm ²)	L (/cm²/s)
Hofstadter (1950)	0.15	1 nA	6.25 x 10 ⁰⁹	6.0 x 10 ¹⁹	3.8 x 10 ²⁹
JLab	12	100 µA	6.25 x 10 ¹⁴	6.0 x 10 ²²	3.8 x 10 ³⁷
SCRIT (20 W)	0.15-0.30	300 mA	1.88 x 10 ¹⁸	1.0 x 10 ⁰⁹	1.9 x 10 ²⁷
FRIB (400 kW)	<1 (0.2 calc.)	300 mA	1.88 x 10 ¹⁸	1.9 x 10 ¹³	3.6 x 10 ³¹
positrons (1/100)	<1 (0.2 calc.)	3 mA	1.88 x 10 ¹⁶	1.9 x 10 ¹³	3.6 x 10 ²⁹

Table 2

Facility for Rare Isotope Beams

Possible e[±]-RIB Concept @ FRIB

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Trap RIB Concept

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Recirculated RIB Concept

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Current Linac Goal

- Build a prototype
 - Photo-gun design: (un)polarized electron beam (A. Rodriguez Alicea)
 - Trap cavity design (A. Lapierre, FRIB)
 » Dual ports: electron scattering and laser spectroscopy (K. Minamisono)
 - Acceleration: cool copper cavity (C³) with Cornell
 - » Operation: LN2
 - » Gradient: 150 MeV/m
 - » Length: 1 m

Ion gun

» f = 4.712 GHz

S. Gourlay, T. Raubenheimer and V. Shiltsev, Frontiers in Physics (June 2022)

Commercial or ReA3/6/D-line @ FRIB

E. Nanni, HEP2022

Facility for Rare Isotope Beams

Working Principle of an EBIS/T

Axial positive potential well from the trap electrodes combined to an axial electron beam (space-charge) potential

Facility for Rare Isotope Beams

How do we inject & extract ions? Two ion injection schemes

Pulsed (dynamic ion capture)

FRIB

Facility for Rare Isotope Beams

Future Electron-Gun Upgrade for Higher Electron Current

New dispenser cathode modular insert to be placed in the existing EBIT electron gun

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

Expected Intensities from the EBIT Upgrade

Parameters/Properties	Present e-gun	Upgrade, Phase 1	Upgrade, Phase 2
Cathode diameter (type)	6.35 mm (Ba/W)	12.7 mm (Ba/W)	12.7 mm (Ba/W)
E-beam current	300 – 600 mA	2 A	4 A
E-beam radius	~200 μm	~400 μm	~400 μm
Current density	170 - 340 A/cm ²	432 A/cm ²	864 A/cm ²
Acceptance	12 mm mrad	40 mm mrad	50 mm mrad
Acceptance pulse width	~40 μs	~40 μs	~40 μs
Charge capacity	2E10 e	1E11 e	2E11 e
Max pulsed Ne ⁸⁺ rate	6E9 pps	6E9 pps	6E9 pps
Max pulsed Ar ¹⁶⁺ rate	1E9 pps	2E9 pps	4E9 pps
Max DC Ne ⁸⁺ rate	2E10 pps	1.5E11 pps	3E11 pps
Max DC Ar ¹⁶⁺ rate	8E8 pps	7E9 pps	3E10 pps

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Photogun And Injection System

- Spin polarized electron beam
 - Energy: 100-500 MeV
 - Current: 50 mA 1 A average
 - Luminosity: ~10²⁸ cm⁻²
 - Electron gun will follow same technology as CEBAF gun
 - Cold copper accelerating cavity (collaboration with Cornell)
- Ion beam
 - From D-line that delivers 10^3 ions with 60 keV
 - Buncher and ion trap to achieve at least 10⁸ ions
- Ion trap
 - Use SCRIT technology as foundation/model
 - Detectors: standard nuclear physics systems

Michigan State University

- » Beam: Mott polarimeter
- » Scattered particles:
 - magnetic spectrometer, drift chambers, timing scintillators

Next Steps

- Science case
 - Rare isotope rings: nuclear/nuclear astrophysics community
 - $\bullet \ e^{\pm}$ scattering: electron scattering community
 - Goals
 - » Series of (hybrid) workshops: fall 2023, spring 2024
 - » Science report: summer/fall 2024
- Accelerator systems
 - RI ring systems: White Paper NSAC LRP » Nuc. Astro. team is working on it
 - e[±] system

» Interest: Cornell, BNL ... JLab

g Kange Plan Town Hall Meeting on Nuclear Structure, Reactions, and November 14–16, 2022, Argonne National Laboratory

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Thank You!

Paul Guèye T: 517-908-7481 E: gueye@frib.msu.edu

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University