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• Significant interest in photoinjector; wakefield; fundamental high field 

physics

• Broad interest in high gradient cavity development with focus on brightness

• SLAC cryogenic breakdown reduction ⇒ higher accelerating gradients 

possible

• TopGun previous development in S-band (2-3 GHz)

• More cryo manageable C-band (4-6 GHz) + interest in broader applications 

e.g. compact high brightness light sources and linear colliders

1) Background
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Next generation high brightness electron 

beams from ultrahigh field cryogenic rf 

photocathode sources

JB Rosenzweig,  et al. - Physical Review 

Accelerators and Beams, 2019



1. Ultra-high gradient photoinjector 

prototype (UCXFEL right)
1. Integrated infrastructure template

2. Cathode load-lock development

3. RF prototype, black plane etc.

2. Cryogenic emission physics testing:
1. Dedicated high gradient RF test stand for 

cathodes incl. novel semiconductors

2. Cryogenic dark current and breakdown  

1) CYBORG Function 1
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• For university scale we want simplest 

NC RF beamline integration using 

CrYogenic Brightness Optimized 

Radiofrequency Gun (CYBORG)

J. Rosenzweig et al., New Journal of Physics, vol. 22, no. 9, p. 
093067, 2020. doi:10.1088/1367-2630/abb16c

J.B.  Rosenzweig et al. “A high-flux compact X-ray free-electron laser for 

next-generation chip metrology needs.” Preprints 2023, 2023111639. 

https://doi.org/10.20944/preprints202311.1639.v1



1. Cathode testing at cryogenic 

temperatures with high 

gradients:
1. Dedicated high gradient RF test 

stand for diagnostic development

2. Cryo cathode load-lock development

2. Pathway to record high 

gradients for improved 

brightness:
1. Integrated infrastructure template

2. RF prototype, black plane etc.

3. Cryogenic dark current and breakdown

1) Test bed overview
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• Schematic for simplest test bed for 

measuring cathodes using CYBORG RF

source

RF

gun

Cathode 

transport

Coldhead
Helium 

Compressor

• Test bed now in position for process knows as 

conditioning by which gun cavity prepared for high 

gradient operation 



1) Gun Comparisons

• During design and production of 
CYBORG influence taken from 
existing photoguns

• Compared here along with two 
related experiment designs

• Highlights also CYBORG design 
phases
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• Robust program at Multi-Option Testing for High-field Radiofrequency 

Accelerators (MOTHRA) laboratory (right and below) to establish knowledge 

basis

• Suitable for cryogenics testing; C-band infrastructure development; low 

energy (single MeV) beamline for cathode studies

• CYBORG beamline major component w/ multi-phase development currently 

in Phase1

2) MOTHRA Review
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2) Previous Cryo + Low Power Updates 

• Last status update in June had assemble gun section (left), placed in cryostat with 

thermal insulation (middle), and performed cool down to 90 K with low power RF 

antenna measurement (right)
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RF 

antenna



2) Previous High Power Updates 

• Fired klystron RF into dummy load (middle) to tune pulse for driving gun and 

measured frequency bandwidth of klystron, up to 0.5 MW

• Example 4 us pulse shown (right)
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2) Beamline Updates

• Put in concrete bricks to shield beamline (gap to be 

filled with smaller stacked lead bricks when 

necessary)

• Connected waveguide between gun and klystron 

with probes for monitoring RF power 
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2) Phase1 Progress

Solenoid

½ Cell Cavity

Thermal Heat 

Exchange Straps

e- beam

RF Dummy 

port

WR187 Waveguide
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Solenoid

WR187 Waveguide

Thermal Heat 

Exchange Straps

G. Lawler et al, “Improving Cathode Testing with a High 

Gradient Cryogenic Normal Conducting RF Photogun“ 

Instruments (under review)

e- beam



2) Beamline for Conditioning

• Added preliminary beamline section sufficient 
for gun conditioning: (a,e) 2x ion pumps , (b) 
solenoid, (c) steering magnet (d) YAG 
screen

• < 10^-8 torr (2uA; 5 uA) at gun and screen

• Custom solenoid mount has 4 degrees of 
freedom
– 3 transverse + rotation about x (vertical axis)

(a)

(b)

(d)
(e)

Cu cathode visible down 

the barrel of the gun 
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(c)



2) CYBORG Phase1
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2) Gun Cooldown w/ Beamline

• Previous cooling (right) for 
comparison

• Added beamline feedthrough giving 
additional heat leak and 

• 50 hours of cooling: 74 K on cold 
head and 105 K on gun 

• Braid conductance much better (35 
K grad vs. 60 K gradient)

• 10 K warmer due to addition of 
beamline connection since 95 K 
test
– More thermal shielding to come
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• Previous cooling (right) for 
comparison

• Added beamline feedthrough giving 
additional heat leak and 

• 50 hours of cooling: 74 K on cold 
head and 105 K on gun 

• Braid conductance much better (35 
K grad vs. 60 K gradient)

• 10 K warmer due to addition of 
beamline connection since 95 K 
test
– More thermal shielding to come



2) Further Cooling Improvements

• Previous outer shielding difficult to 

integrate without thermal shorts 

(below) due to MLI movement

• Assembling improved version with 

aluminum sheets for extra rigidity

AL125 for outer 

shielding

CH110LT covered in MLI (inner shielding)
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3) Qualitative RF Breakdown Theory [18]

• RF breakdown rate (BDR) increases 
exponentially with accelerating gradient 

• Prevailing thesis is caused by field 
emission from cavity microstructure 
reaching 10 GV/m leading to 10^11 
A/m^2 currents which by Joule heating 
vaporize the emitters on the 10s of nm 
scale

• (a) Metal gas ionized by field emission 
current and (b) ions form sheath near 
surface or hit the surface (c) leading to 
more field emission and eventually 
explosive electron emission (EEE) 
melting microdroplets and craters

• (d-f) Crater-microdroplet system forms 
more field emitters until stored energy 
in RF structure would be absorbed until 
it could no longer sustain the process



3) RF Breakdown Signal [17]

• Reflected power shown in (a)

• Forward power shown in (b)

• Green dashed no breakdown

• Blue with breakdown

• Also measured via downstream screens or 
pressure rise (below, compressed 30 minutes 
@ 1 Hz rep rate)



3) Waveguide Test

• No waveguide breakdown for 700 mV => 320 kW 

and 1.5 us pulse
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3) Waveguide Test

• Extend pulse length long enough see breakdown before entering gun

• Longer pulse has something that may be tube breakdown

• Gun operation for 2 us pulses so should not be major problem
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length 
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1/8/2024 23UCLA PBPL



• Ideal gun filling looks qualitatively like (right)

• Additional C-band motivation @ cryogenic temp, RF 
filling time scales as 

• RF pulse lengths using same input power can be 
shorter leading to less pulse heating
– Greater than factor of 3 reduction in filling time for Sband to Cband

• Power needed to drive scaled geometry at constant 
gradient scales like 

– Greater than factor of 4 reduction for Sband to Cband

3) Filling Resonant Cavity
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3) Cold Gun Feeding

• First filling of gun cavity at intermediate temperature during cool down 
to 150 K to look at detuning

• 100 mV => 14 kW 

• Fully filled @ 2.5 us => 15 MV/m
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3) Cryo Gun Conditioning

• Down to 105 K for conditioning

• (a) 2.5 us pulse low power (8 kW) to find resonance @ 5719.2 GHz (left) (b) shortened 
pulse to 1 us (c) ramped up power pausing when breakdown events observed and let 
run until breakdown events cease (middle) (d) repeat until max power (right)
– Up to ≈ 350 kW (right), when fully filled @ 2.5 us => 75 MV/m

• Go back to lowest input power level incrementally increase pulse length and repeat up 
to highest power until operational power and pulse length experience no breakdown 
events.
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• Theory already exists which predicts minimum in Rs at intermediary T via 

Gurzhi based (effect of additional electron-electron interaction)

• Known in world of thin film physics

• Solve for above cutoff for RRR450 gives approx. 35K-40K

• Proof of concept easier toy model built which has some of same features 

and easier to compute for now (below + right)

3) RF Surface Theory
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G. Lawler, A. Fukasawa, N. Majernik, and J. Rosenzweig, in 

Proc. IPAC’22, Bangkok, Thailand, 2022, paper THPOST045, 
pp. 2540–2543, doi:10.18429/JACoW-IPAC2022-

THPOST045

• Effective thin film modification to bulk 

via Fuchs-Sondheimer

R. Gurzhi, “Contribution to the theory of 

the skin effect in metals at low 

temperatures,” Sov. Phys. JETP, vol. 

20, pp. 1228–1230, 1964.



• Q0 enhancement measurements for COMEB pillbox 

cavity room temperature down to 38K

• Geometric factor (simulated value) leads to Rs values

• 77K relevant for UCXFEL + C^3 linacs; 45K relevant 

for UCXFEL photoinjector

• Excellent agreement w/ RSC outside of 60-100K

3) RF Surface Measurements
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G. Lawler, F. Bosco, and J. Rosenzweig, “Improving Interface Physics Understanding in High-

Frequency Cryogenic Normal Conducting Cavities“ arXiv (submitted)
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3) Additional RF Surface Theory Improvements
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• Consider again assumptions

• n=5 for ideal metals 

• Literature has n=3 for transition metals

• n=4 sometimes when more complicated phenomena 

present



3) Additional RF Surface Theory Improvements
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• When compared to CYBORG 

antenna measurements 

undervalued esp. compared to 

pillbox

• As conditioning continues, can 

measure Q and coupling during 

conditioning  



• Parameters for gun thus far compared to RRR100-500 case (left) with empirical 

numbers measured to inform simulations (right)

3) Cryo RF Performance Overview
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G. Lawler et al, “Improving Cathode Testing with a High 

Gradient Cryogenic Normal Conducting RF Photogun“ 

Instruments (under review)



(b)(a)
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3) CYBORG MTE Performance

• Performance sufficient for laser @ near threshold to 

be main concern 
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4) Phase2 Load lock

• Difficulty of interference fit for cathode coupling not reliable 

in near term

• Shift to knife edge coupling with sufficiently thermally 

isolated transfer arm

35
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½ Cell Cavity + 

INFN miniplug

e- beam
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• Advertisement for MITHRA 18m of parallel 

beamline

• Operational with S-band hybrid photoinjector

• Suitable for high energy high gradient linac

development (10s-100s MeV); UCXFEL 

demonstrator FELs; C-band high gradient 

photoinjector research

4) MITHRA Lab
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J.B.  Rosenzweig et al. “A high-flux compact X-ray free-electron laser for 

next-generation chip metrology needs.” Preprints 2023, 2023111639. 

https://doi.org/10.20944/preprints202311.1639.v1



• C-band SLED RF amplifier for collaboration with SLAC => 2 MW 

output power 

• Considering optimization with Cornell for UED with 180 MV/m 

peak cathode field now

• Addition of X-band linearizer advantageous 

• Low charge case for UED consideration

– 75 um spot size; Cu cathode; 77 K; 0.015 mm mrad; 25 meV MTE; 

– Simulation @ 120 MV/m

• 1 MeV

• rms energy spread 3e-4

• 0.063 mm mrad & 0.081 mm mrad

– Simulation @ 240 MV/m

• 2 MeV

• rms energy spread 6e-4

• 0.022 mm mrad & 0.025 mm mrad

4) CYBORG UED
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R. K. Li, P. Musumeci, H. A. Bender, N. S. Wilcox, 

M. Wu; J. Appl. Phys. 1 October 2011; 110 (7): 

074512. https://doi.org/10.1063/1.3646465

https://doi.org/10.1063/1.3646465


1. Brief update on CYBORG beamline development 

with more very soon

2. LLRF cavity measurements possible for fully 

understanding material properties via Q0/Rs

3. CYBORG useful for high power material physics 

testing in terms of photocathodes and RF 

5) Conclusions
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