Updates on 6D Phase Space Reconstruction Method

CBB BDC Meeting - October 12th, 2023

J.P. Gonzalez-Aguilera* (UChicago)

Advisors: Y.-K. Kim (UChicago), R. Roussel (SLAC), A. Edelen (SLAC)

* jpga@uchicago.edu

Outline

PART I

- Introduction
- Phase space reconstruction method
 - 6D phase space distribution parametrization
 - Differentiable particle tracking
- 4D results (previous research)

PART II

- 6D method (new)
 - lattice
 - data
- 6D preliminary results (simulations)
- Conclusions and future work

Manipulating Beams in Phase Space

PRL 129, 224801 (2022)

Manipulating Beams in Phase Space

PRL 129, 224801 (2022)

Phase space distribution measurements

Simple quad scan:

- rotate beam by scanning focusing strength
- measure the beam size
- Fit and solve for ε

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (single-shot 2D)
- Moving slit (multiple measurements)

Advanced tomographic methods:

- Maximum entropy tomography (MENT)
- Algebraic reconstruction (ART, SART)

Phase Space Fitting as optimization problem

Phase Space Fitting as optimization problem

We want more detail:

- How do we **parametrize** the beam 6D phase-space distribution in a a **flexible** and **learnable** way?
- How do we run simulations that support optimization of extremely high dimensional problems (~1k parameters)?

Neural Network Parameterization of Beam Distributions

- 6D phase space distribution parametrization that is
 - flexible
 - learnable

Fully connected NN with ~ O(1k) parameters

Differentiable Simulations (Automatic Differentiation)

Keep track of derivative information during every calculation step using the chain rule and memory.

Fast and accurate highdimensional gradients

Enables gradient-based optimization of model with respect to all free parameters.

Easily optimize models with >10k free parameters.

Differentiable Simulations (Automatic Differentiation)

Keep track of derivative information during every calculation step using the chain rule and memory.

Fast and accurate highdimensional gradients

Enables gradient-based optimization of model with respect to all free parameters.

Easily optimize models with >10k free parameters.

K• Z = f(Y; K)

 $\partial Z \ \partial Z \ \partial \sigma_Z$

 $\overline{\partial Y}$, $\overline{\partial K}$, $\overline{\partial K}$,

Synthetic Example

Synthetic beam distribution in simulation

Screen images

Synthetic Example Reconstruction

Tomography Example from AWA

AWA Reconstruction Results

Uncertainty

Create a **snapshot ensemble** to measure uncertainty by cycling the learning rate

Huang G. et al., ICLR 2017

Uncertainty

Create a **snapshot ensemble** to measure uncertainty by cycling the learning rate

Quadrupole:

$$H = \frac{p_x^2 + p_y^2}{2(1+p_z)} + \frac{k_1(p_z)}{2}(x^2 - y^2)$$

- Weak dependence on p_z via chromatic effects
- No dependence on z

Uncertainty

PART II 6D phase space reconstruction

What do we have

• 6D parametrization of beam phase space

• Reconstruction algorithm and differentiable particle tracking

What do we have

• 6D parametrization of beam phase space

• Reconstruction algorithm and differentiable particle tracking

Improved diagnostics beamline:

Improved diagnostics beamline:

Total training images: 20

Data

Simulated example: ground truth synthetic beam

Reconstruction: preliminary results

10

Reconstruction: preliminary results

Number of particles in NN parametrization

Where does the information come from?

Where does the information come from?

`T` scan results

Conclusions and future work

- Detailed 6D phase space reconstruction:
 - few measurements:
 - only quad + TDC + Dipole
- Number of particles in parametrization is important
- Full scan is important
- Ready for experiment!

Thanks! Questions?

Phase-Space Reconstruction:

- Ryan Roussel (SLAC)
- Auralee Edelen (SLAC)
- Christopher Mayes (SLAC)
- Daniel Ratner (SLAC)
- Seongyeol Kim (ANL)
- John Power (ANL)
- Eric Wisniewski (ANL)

Differentiable Accelerator

Modeling at UChicago:

- Young-Kee Kim
- Chris Pierce
- J.P. Gonzalez-Aguilera

Details: PRL 130, 145001 (2023)

This work was supported by:

- DoE contract No. DE-AC02-76SF00515
- NSF award PHY-1549132, the Center for Bright Beams
- Physical Sciences Division Fellowship, The University of Chicago
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Conclusions

- 4D detailed phase space reconstruction from few measurements and without special diagnostics
- Neural Network beam parametrization and differentiable simulations are not limited by dimensionality.
- Potentially **extensible to 6D** with the addition of longitudinal diagnostics.
- Can incorporate heterogeneous measurements:
 - More screens, BPMs, ...
 - Different types of data

Details: PRL 130, 145001 (2023)

Backup: Maximum Entropy Loss Function

Backup: Maximum Entropy Tomography (MENT)

Rotate phase space as before, but reconstruct the distribution from 1D projections + maximize the beam distribution entropy Lagrange multiplier $\rho^* = \arg\min\{-H(\rho) + \lambda f(\rho)\}$ **Distribution entropy Discrepancy with measurement** 0.8 0.8 0.5 0.5 0.6 0.6 0 > 0 0.4 0.4 -0.5 -0.5 -0.5 0.2 0.2 -1 -0.5 0.5 0.5 0.5 -1 -1 -0.5

Hock K. and Ibison M., JINST, 2013

Backup: Synthetic Example Reconstruction

Parameter	Ground truth	rms prediction	Reconstruction	Unit
ε_x	2.00	2.47	2.00 ± 0.01	mm-mrad
ε_y	11.45	14.10	10.84 ± 0.04	mm-mrad
$\varepsilon_{4\mathrm{D}}$	18.51	34.83 ^a	17.34 ± 0.08	mm^2 - $mrad^2$

Backup: AWA Reconstruction Results

Backup: AWA Reconstruction

Red border denotes test samples

Backup: Kernel Density Estimation (KDE)

Backup: Reverse vs Forward Autodiff

https://towardsdatascience.com/forward-mode-automaticdifferentiation-dual-numbers-8f47351064bf

Backup: Memory profiling

Test 1: 10 quads separated by drifts. Peak memory vs number of particles

Backup: Memory profiling

Test 2: 10⁴ particles Peak memory vs n quads

Backup: Memory profiling

Test 3: 10⁴ particles Peak memory vs n slices in single quad+drift