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Outline

PART I

• Introduction

• Phase space reconstruction method
– 6D phase space distribution parametrization

– Differentiable particle tracking

• 4D results (previous research)
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• 6D method (new)
– lattice

– data

• 6D preliminary results (simulations)

• Conclusions and future work



Manipulating Beams in Phase Space
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Manipulating Beams in Phase Space

Detailed measurement of beam phase 

space distribution is important!  

PRL 129, 224801 (2022)

PRAB 21, 112802 (2018)

https://doi.org/10.1103/PhysRevLett.129.224801
https://doi.org/10.1103/PhysRevAccelBeams.21.112802


Phase space distribution measurements

Argonne Wakefield Accelerator (AWA) 

drive beamline

How do I get the most 

information out of these 

in an efficient way?

We want to know phase 

space distribution here



Usual Approaches
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Advanced tomographic methods:
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• Very detailed 

• Slow (many observations needed)

• Wastes information: 1D projections 

only. 

Power. J. et al PAC07, 2007



Simple quad scan:

• Beam distribution is assumed to be elliptical. 

Fully parametrized by 𝜎𝑥𝑥 , 𝜎𝑥𝑝𝑥
, 𝜎𝑝𝑥𝑝𝑥

• Assume linear transport of elliptical beam

• Beam sizes from screen downstream

• Error of the quadratic fit

Result: 

• Elliptical 2D phase space consistent with beam 

size measurements.

Phase Space Fitting as optimization problem

𝜎𝑥
2 = 1 + 𝑑𝑙𝑘 2𝝈𝟏𝟏

+2 1 + 𝑑𝑙𝑘 𝝈𝟏𝟐

+𝑑2𝝈𝟐𝟐



Phase Space Fitting as optimization problem

We want more detail: 

• How do we parametrize the beam 6D phase-space 

distribution in a a flexible and learnable way?

• How do we run simulations that support optimization

of extremely high dimensional problems (~1k 
parameters)?

*LCLS



• 6D phase space distribution parametrization that is 

– flexible 

– learnable

Neural Network Parameterization of Beam Distributions

Fully connected NN with ~ O(1k) parameters



Differentiable Simulations (Automatic Differentiation)

Keep track of derivative 

information during every 

calculation step using the chain 

rule and memory.

Fast and accurate high-

dimensional gradients

Enables gradient-based 

optimization of model with 

respect to all free parameters.

Easily optimize models with 

>10k free parameters.

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦,
𝑔 𝑥, 𝑓(𝑥, 𝑦) = 𝑥 ∗ 𝑓 𝑥, 𝑦 ,

𝑥 = 3,
𝑦 = 2.
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Keep track of derivative 

information during every 

calculation step using the chain 

rule and memory.

Fast and accurate high-

dimensional gradients

Enables gradient-based 

optimization of model with 

respect to all free parameters.

Easily optimize models with 

>10k free parameters.



Phase Space Reconstruction Pipeline
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Phase Space Reconstruction Pipeline



Synthetic Example

Screen images

Synthetic beam distribution in simulation



Synthetic Example Reconstruction

Detailed reconstruction of 4D 

phase space with only

• a quadrupole and a screen

• 10 images

50th percentile ground truth

50th percentile reconstruction

95th percentile ground truth

95th percentile reconstruction
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Tomography Example from AWA

Drive beamline
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AWA Reconstruction Results

Detailed reconstruction of 4D phase 

space in 5 min with only

• a quadrupole and a screen

• 10 quad strength, 3 

measurements for each

50th percentile measured

50th percentile reconstructed

95th percentile measured

95th percentile reconstructed

test samples
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Uncertainty

Create a snapshot ensemble to measure 

uncertainty by cycling the learning rate

Huang G. et al., ICLR 2017
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Uncertainty

Create a snapshot ensemble to measure 

uncertainty by cycling the learning rate

Huang G. et al., ICLR 2017

Quadrupole:

𝐻 =
𝑝𝑥

2 + 𝑝𝑦
2

2 1 + 𝑝𝑧
+

𝑘1(𝑝𝑧)

2
𝑥2 − 𝑦2

• Weak dependence on 𝒑𝒛 via chromatic effects

• No dependence on 𝒛

No information

Lots of information

Some information
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Quadrupole:
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𝑝𝑥
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2

2 1 + 𝑝𝑧
+

𝑘1(𝑝𝑧)

2
𝑥2 − 𝑦2

• Weak dependence on 𝒑𝒛 via chromatic effects

• No dependence on 𝒛

No information

Lots of information

Some information

How do we get longitudinal 

coordinates information?
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PART II

6D phase space reconstruction



30

What do we have

• 6D parametrization of beam phase space

• Reconstruction algorithm and differentiable particle tracking
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What do we have

• 6D parametrization of beam phase space

• Reconstruction algorithm and differentiable particle tracking

We need information of 

longitudinal coordinates in 

x-y beam profiles



32

Improved diagnostics beamline:

DipoleTDCQuad

Y

A

G 

1



33

Improved diagnostics beamline:

DipoleTDCQuad

Y

A

G 

1

K: {-5, … ,5} 1/m^2

(5 quad strengths) OFF/ON OFF/ON

Total training images: 20
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Data

K: {-5, … ,5} 1/m^2
(5 quad strengths)

OFF/ON OFF/ON
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Simulated example: ground truth synthetic beam
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Reconstruction: preliminary results

ground truth reconstruction
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Reconstruction: preliminary results

ground truth reconstructionreconstruction

50th percentile measured

50th percentile reconstructed

95th percentile measured

95th percentile reconstructed
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Number of particles in NN parametrization

10,000 particles

~10 min

~10 Gb GPU RAM

100,000 particles

~15 min

~30 Gb GPU RAM

100,000 particles

~30 min

~150 Gb GPU RAM
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Where does the information come from? 

K: {-5, … ,5} 1/m^2
(5 quad strengths)

OFF/ON OFF/ON
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Where does the information come from? 

K: {-5, … ,5} 1/m^2
(5 quad strengths)

OFF/ON OFF/ON
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`T` scan results

‘T’ scan full scan
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Conclusions and future work

• Detailed 6D phase space reconstruction:

– few measurements:

– only quad + TDC + Dipole

• Number of particles in parametrization is 

important

• Full scan is important

• Ready for experiment!



Thanks! Questions?

This work was supported by: 

• DoE contract No. DE-AC02-76SF00515

• NSF award PHY-1549132, the Center for Bright Beams

• Physical Sciences Division Fellowship, The University of Chicago

• DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Phase-Space Reconstruction:

• Ryan Roussel (SLAC)

• Auralee Edelen (SLAC)

• Christopher Mayes (SLAC)

• Daniel Ratner (SLAC)

• Seongyeol Kim (ANL)

• John Power (ANL)

• Eric Wisniewski (ANL)

Differentiable Accelerator 

Modeling at UChicago:

• Young-Kee Kim

• Chris Pierce

• J.P. Gonzalez-Aguilera

Details: PRL 130, 145001 (2023) 

https://doi.org/10.1103/PhysRevLett.130.145001
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Conclusions

- 4D detailed phase space 

reconstruction from few measurements 

and without special diagnostics

- Neural Network beam parametrization and 

differentiable simulations are not limited 

by dimensionality.

- Potentially extensible to 6D with the 

addition of longitudinal diagnostics.

- Can incorporate heterogeneous 

measurements:
- More screens, BPMs, …

- Different types of data

Details: PRL 130, 145001 (2023) 

https://doi.org/10.1103/PhysRevLett.130.145001


Backup: Maximum Entropy Loss Function

Strong evidenceNo evidence Weak evidence



Backup: Maximum Entropy Tomography (MENT)

Rotate phase space as before, but 

reconstruct the distribution from 1D 

projections + maximize the beam 

distribution entropy

𝜌∗ = arg min{−𝐻 𝜌 + 𝜆𝑓(𝜌)}

Distribution entropy Discrepancy with measurement

Lagrange multiplier

Hock K. and Ibison M., JINST, 2013

Note: 𝐻 ∝ log(𝜀)



Backup: Synthetic Example Reconstruction



Backup: AWA Reconstruction Results



Backup: AWA Reconstruction
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Red border denotes test samples



Backup: Kernel Density Estimation (KDE)



Backup: Reverse vs Forward Autodiff

https://towardsdatascience.com/forward-mode-automatic-

differentiation-dual-numbers-8f47351064bf

https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf
https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf


Test 1: 10 quads separated by drifts. 

Peak memory vs number of particles

Backup: Memory profiling



Test 2: 10^4 particles

Peak memory vs n quads

Backup: Memory profiling



Test 3: 10^4 particles

Peak memory vs n 

slices in single 

quad+drift

Backup: Memory profiling
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