Updates on 6D Phase Space Reconstruction Method

CBB BDC Meeting - October $12^{\text {th }}, 2023$
J.P. Gonzalez-Aguilera* (UChicago)

Advisors: Y.-K. Kim (UChicago), R. Roussel (SLAC), A. Edelen (SLAC) LABORATORY

Outline

PART I

- Introduction
- Phase space reconstruction method
- 6D phase space distribution parametrization
- Differentiable particle tracking
- 4D results (previous research)

PART II

-6D method (new)

- lattice
- data
-6D preliminary results (simulations)
- Conclusions and future work

Manipulating Beams in Phase Space

Manipulating Beams in Phase Space

General Accelerator R\&D Program

Accelerator and Beam Physics Roadmap

DOE Accelerator Beam Physics Roadmap Workshop

September 6-8, 2022

Detailed measurement of beam phase space distribution is important!

Phase space distribution measurements

Usual Approaches

Simple quad scan:

- rotate beam by scanning focusing strength
- measure the beam size

- Fit and solve for ε

Usual Approaches

Usual Approaches

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (single-shot 2D)
- Moving slit (multiple measurements)

Usual Approaches

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (sinale-shot2D)
- Md - Fast
- Not as detailed as we would like
- Limited dynamic range
- Wastes information: only uses beamlets intensities, positions and sizes

Usual Approaches

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (sinale-shot2D)
- Md - Fast
- Not as detailed as we would like
- Limited dynamic range
- Wastes information: only uses beamlets intensities, positions and sizes

Pepper Pot	YAG:Ce screen
	Power. J. et al PAC07, 2007

Advanced tomographic methods:

- Maximum entropy tomography (MENT)
- Algebraic reconstruction (ART, SART)

Usual Approaches

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (sinale-shot2D)
- Md - Fast
- Not as detailed as we would like
- Limited dynamic range
- Wastes information: only uses beamlets intensities, positions and sizes

Pepper Pot	YAG:Ce screen
	Power. J. et al PAC07, 2007

Streak beam at various angles and record the projections on a screen.
1 Set quadrupoles to obtain desired transverse

Advanced tomographic methods:

- Maximum entropy tomography (MENT)
(4)emene
- Algebraic reconstruction (ART, SA - Very detailed
- Slow (many observations needed)

Phase Space Fitting as optimization problem

Simple quad scan:

Result:

- Elliptical 2D phase space consistent with beam size measurements.

Phase Space Fitting as optimization problem

We want more detail:

- How do we parametrize the beam 6D phase-space distribution in a a flexible and learnable way?
- How do we run simulations that support optimization of extremely high dimensional problems ($\sim 1 \mathrm{k}$ parameters)?

Neural Network Parameterization of Beam Distributions

-6D phase space distribution parametrization that is

- flexible
- learnable

Fully connected NN with ~ O(1k) parameters

Differentiable Simulations (Automatic Differentiation)

Keep track of derivative information during every calculation step using the chain rule and memory.

Fast and accurate highdimensional gradients

Enables gradient-based optimization of model with respect to all free parameters.

Easily optimize models with $>10 \mathrm{k}$ free parameters.

$$
\begin{aligned}
& f(x, y)=x+y, \\
& g(x, f(x, y))=x * f(x, y) \text {, } \\
& x=3 \text {, } \\
& y=2 \text {. } \\
& \frac{\partial g}{\partial x}=\frac{\partial \bar{g}}{\partial x}+\frac{\partial \bar{g}}{\partial f} * \frac{\partial \bar{f}}{\partial x} \\
& =f+x * 1 \\
& =x+y+x \\
& =2 x+y=8 \text {. }
\end{aligned}
$$

Differentiable Simulations (Automatic Differentiation)

Keep track of derivative information during every calculation step using the chain rule and memory.

Fast and accurate highdimensional gradients

Enables gradient-based optimization of model with respect to all free parameters.

Easily optimize models with $>10 \mathrm{k}$ free parameters.

Phase Space Reconstruction Pipeline

Synthetic Example

Synthetic beam distribution in simulation

Screen images

Synthetic Example Reconstruction

Detailed reconstruction of 4D

phase space with only

- - - - $50^{\text {th }}$ percentile ground truth
- a quadrupole and a screen
$----95^{\text {th }}$ percentile ground truth
- 10 images

Tomography Example from AWA

AWA Reconstruction Results

（a）
（b）

Detailed reconstruction of 4D phase space in 5 min with only
－a quadrupole and a screen
－ 10 quad strength， 3 measurements for each

ーーーー $50^{\text {th }}$ percentile measured	
	$50^{\text {th }}$ percentile reconstructed
－ー－－	$95^{\text {th }}$ percentile measured
	$95^{\text {th }}$ percentile reconstructed test samples

Uncertainty

Create a snapshot ensemble to measure uncertainty by cycling the learning rate

Uncertainty

Create a snapshot ensemble to measure uncertainty by cycling the learning rate

(b)

Quadrupole:

$$
H=\frac{p_{x}^{2}+p_{y}^{2}}{2\left(1+p_{z}\right)}+\frac{k_{1}\left(p_{z}\right)}{2}\left(x^{2}-y^{2}\right)
$$

- Weak dependence on p_{z} via chromatic effects
- No dependence on z

Uncertainty

Create a snapshot ensemble to measure uncertainty by cycling the learning rate

Quadrupole:

$$
H=\frac{p_{x}^{2}+p_{y}^{2}}{2\left(1+p_{z}\right)}+\frac{k_{1}\left(p_{z}\right)}{2}\left(x^{2}-y^{2}\right)
$$

- Weak dependence on p_{z} via chromatic effects
- No dependence on z

PART II

6D phase space reconstruction

What do we have

- 6D parametrization of beam phase space

- Reconstruction algorithm and differentiable particle tracking

What do we have

-6D parametrization of beam phase space
Samples
Randomly Generated
$X \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$X \in \mathbb{R}^{6}$

- Reconstruction algorithm and differentiable particle tracking

> | We need information of |
| :--- |
| longitudinal coordinates in |
| $x-y$ beam profiles |

Improved diagnostics beamline:

Improved diagnostics beamline:

Total training images: 20

Data

Simulated example: ground truth synthetic beam

Reconstruction: preliminary results

Reconstruction: preliminary results

Number of particles in NN parametrization

Where does the information come from?

Where does the information come from?

$` T `$ scan results

Conclusions and future work

- Detailed 6D phase space reconstruction:
- few measurements:
- only quad + TDC + Dipole
- Number of particles in parametrization is important
- Full scan is important
- Ready for experiment!

Thanks! Questions?

Phase-Space Reconstruction:

Differentiable Accelerator

- Ryan Roussel (SLAC)
- Auralee Edelen (SLAC)
- Christopher Mayes (SLAC)
- Daniel Ratner (SLAC)

Modeling at UChicago:

- Young-Kee Kim
- Chris Pierce
- J.P. Gonzalez-Aguilera
- Seongyeol Kim (ANL)
- John Power (ANL)
- Eric Wisniewski (ANL)

Details: PRL 130, 145001 (2023)

This work was supported by:

- DoE contract No. DE-AC02-76SF00515
- NSF award PHY-1549132, the Center for Bright Beams
- Physical Sciences Division Fellowship, The University of Chicago
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Conclusions

- 4D detailed phase space reconstruction from few measurements and without special diagnostics
- Neural Network beam parametrization and differentiable simulations are not limited by dimensionality.
- Potentially extensible to 6D with the addition of longitudinal diagnostics.
- Can incorporate heterogeneous measurements:
- More screens, BPMs, ...

Details: PRL 130, 145001 (2023)

- Different types of data

Backup: Maximum Entropy Loss Function

Loss Function

$$
l=-\log \left[(2 \pi e)^{3} \varepsilon_{6 D}\right]+\lambda \frac{1}{N I J} \sum_{\text {Initial }}^{N, i, j}\left|R_{n}^{(i, j)}-Q_{n}^{(i, j)}\right|
$$

No evidence

Weak evidence

Strong evidence

Backup: Maximum Entropy Tomography (MENT)

Rotate phase space as before, but reconstruct the distribution from 1D projections + maximize the beam distribution entropy

Lagrange multiplier

$$
\rho^{*}=\arg \min \{-H(\rho)+\lambda f(\rho)\}
$$

Distribution entropy
Discrepancy with measurement

Backup: Synthetic Example Reconstruction

| | Ground
 Parameter | rms
 truth | prediction | Reconstruction |
| :--- | ---: | :---: | :---: | :---: | Unit | ε_{x} | 2.00 | 2.47 | 2.00 ± 0.01 | $\mathrm{~mm}-\mathrm{mrad}$ |
| :--- | ---: | :---: | :---: | :---: |
| ε_{y} | 11.45 | 14.10 | 10.84 ± 0.04 | $\mathrm{~mm}-\mathrm{mrad}$ |
| $\varepsilon_{4 \mathrm{D}}$ | 18.51 | 34.83^{a} | 17.34 ± 0.08 | $\mathrm{~mm}^{2}-\mathrm{mrad}^{2}$ |

Backup: AWA Reconstruction Results

Backup: AWA Reconstruction

Red border denotes test samples

Backup: Kernel Density Estimation (KDE)

Backup: Reverse vs Forward Autodiff

https://towardsdatascience.com/forward-mode-automatic-
differentiation-dual-numbers-8f47351064bf

Backup: Memory profiling

Test 1: 10 quads separated by drifts. Peak memory vs number of particles

Backup: Memory profiling

Test 2: 10^4 particles Peak memory vs n quads

Backup: Memory profiling

Test 3: $10^{\wedge} 4$ particles Peak memory vs n slices in single quad+drift

