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Summary
• Machine learning for better orbit correction at the Alternating 

Gradient Synchrotron

• Generalized Gradient Map Tracking in the Siberian Snakes of the 
Alternating Gradient Synchrotron

• Current to magnet strength calibration with neural network at the 
Alternating Gradient Synchrotron Booster
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Motivation: EIC cooler, higher polarization
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• Booster and the AGS serve as injectors to RHIC and future EIC, which 
require small incoming emittance for electron cooling

• EIC requires pre-cooler at RHIC injection energy (AGS extraction energy)

• Currently Booster and AGS lack systematic tuning routine, mostly hand 
tuned by operators

• Algorithm to better control beam in the injector compound will be helpful to 
produce brighter beam with higher polarization in RHIC and EIC



Injector compound for RHIC and EIC
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• Relativistic Heavy Ion Collider (RHIC): largest 
operating accelerator in the US. 

• Electron Ion Collider (EIC): the nation’s largest 
particle accelerator project. 

• Alternating Gradient Synchrotron (AGS) and its 
Booster serve as part of the injector compound for 
RHIC and future EIC.

• Bright ion beams in the AGS and Booster are 
required for optimal luminosity and highest polarization 
in RHIC and EIC.

• Obtaining bright beam requires more accurate beam 
control in the injector compound, which is currently 
mostly hand tuned by operators.

Injector 
Compound
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Machine Learning for Better Orbit 
Correction at the Alternating 
Gradient Synchrotron



Alternating Gradient Synchrotron (AGS)
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• Alternating gradient / strong focusing principle: achieve 
strong vertical and horizontal focusing of charged 
particle beam at the same time 

• Accelerates proton to 33 GeV in 1960

• 12 super-periods (A to L), 240 main magnets, 810 m 
circumference

• Now serves as injector for Relativistic Heavy Ion 
Collider (RHIC) 



Orbit Response at the AGS
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• 72 pick-up electrodes (PUE), 48 
horizontal and vertical corrector pairs 

• Traditional orbit correction
• obtain mapping from corrector 

settings 𝜃⃗ to orbit measurements 𝑦⃗

• inverse mapping to get corrector 
settings ∆𝜃⃗ needed to cancel orbit 
deviations ∆𝑦⃗



Orbit Correction with Neural Network
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• Need dedicated machine time to measure a 
full orbit response matrix: at least 30 min

• Pre-measured mapping gets less accurate 
with time → orbit drift / brightness drop

• Orbit correction with NN
• train directly to get inverse mapping, no 

need for extra calculation

• easily update with new data and stay 
accurate



ML method: Neural Network (NN)
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• Establish mapping between a given set of inputs 𝑋⃗ and corresponding outputs 𝑌

• Fully connected layers: output = activation(dot(input, weight) + bias)

• Activation function: Hyperbolic Tangent (Tanh) and Rectified Linear Unit (ReLU)

• Feed forward neural network (FFNN): most common, no feedback route



ORM NN model: training results
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• Input 48 vertical corrector kick → Output 72 y orbit measured at BPM

• Trained on 800 data pairs, tested on 200 data pairs: 𝑅! score = 0.998



Inverse ORM NN model: training results
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• Input 72 y orbit measured at BPM → Output 48 vertical corrector kick 

• Trained on 800 data pairs, tested on 200 data pairs: 𝑅! score = 0.993



Future work: error identification
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Neural Network

𝐼!"#$%&
𝜖!"'()$%

⋮

𝑥⃗
𝑦⃗
⋮

Beam 
properties 
(e.g. orbit)

Magnet settings + 
Machine errors

• Neural network can establish 
mapping between any inputs 
and outputs with sufficient data

• Machine error sources (e.g., 
misalignment, gradient / 
calibration errors, etc.) can be 
included as outputs of an 
inverse NN model for beam-
based error diagnostic 
algorithm
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Generalized Gradient Map Tracking 
in the Siberian Snakes of the 
Alternating Gradient Synchrotron



Siberian Snake
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• Rotates particle spin about an axis in the horizontal plane, 
without affecting orbit motion, to avoid depolarizing spin 
resonances

• In the AGS and RHIC: helically twisted dipoles

• Spin tune 𝜈"# of a ring with a Siberian snake of strength 𝑠 
is given by:

• Full Siberian snake (𝑠 = 1) rotates spin by 180°, partial 
Siberian snake (𝑠 < 1) is referred to as a percentage of 
the full snake

cos 𝜋𝜈!" = cos
𝑠𝜋
2
cos 𝜋𝐺𝛾

Siberian snakes in the AGS

warm (top), cold (bottom)



Siberian Snake in the AGS
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• Two partial Siberian snakes 120° apart in the AGS

• Partial snakes cause less orbit disturbances and require 
shorter straight sections

• 5.9% normal conducting (warm) snake

• Super-conducting (cold) snake capable of up to 22%

• 65% polarization was achieved for acceleration of 
1.5×10$$ protons/bunch to 24 GeV in 2007



Generalized Gradient (GG)
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• In spherical coordinates (𝜌, 𝜙, 𝑧), scalar potential 𝜓 of the magnetic field can be written as:

• The function 𝜓%,' (𝛼 = 𝑐 or 𝑠) can be expressed as a Taylor series in 𝜌:

• 𝐶%,' are the generalized gradients, and the superscript [2𝑛] indicates the 2𝑛() derivative of 𝐶%,'

• In practical application, a finite set of 𝐶%,' are chosen to represent the field, and the Taylor series 
for each 𝐶%,' is truncated at some order 𝑁

• In Bmad, the GG fitting algorithm allows user to pick values of 𝑚 for 𝐶%,' and truncate order 𝑁

𝜓 = 5
#$%

&

𝜓#,((𝜌, 𝑧) cos 𝑚𝜙 + 𝜓#,!(𝜌, 𝑧) sin(𝑚𝜙)	

𝜓#,) = 5
*$%

&
−1 *+,𝑚!

4*𝑛! 𝑛 + 𝑚 ! 𝜌
-*+#𝐶#,)

-* (𝑧)



GG tracking results: magnetic field
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• GG maps are generated with 𝑚 = 1, 3, 5, 7 for 𝐶%,' (both cos and sin terms), the Taylor 
series is truncated at order 𝑁 = 5

• Magnetic field values reconstructed from GG fitting algorithm (left) matches the original 
grid field tables (right)
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GG tracking results: twiss & orbit
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• GG map (left) produces accurate beta function and orbit tracking results compared to 
grid field table (right)

GG map Grid table



GG tracking results: snake strength
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• Track three particles with three initial spin configurations: (1,0,0), (0,1,0), and (0,0,1). 
The final spin after the snake is rotated by 3-D rotation matrix 𝑅:

• Snake strength is then calculated as the ratio 𝜃/180° in percentage form

• GG map generates accurate snake strengths for both snakes

𝑅 =
cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0
0 0 1

Snake GG map Grid table
Warm 5.9% 5.86%
Cold 11.4% 11.4%

AGS Snake Strength Calculation Results



GG tracking results: tracking time
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• Compare three tracking methods:
• Taylor map tracking derived from GG field map
• Runge-Kutta tracking using grid table
• Tracking using matrices generated for specific current and energy settings 

(traditional way for MAD simulation)

• GG maps are 1000 times faster than grid table, matrix generated at prefixed energy is 
fastest but has no spin rotation simulation

Snake GG map Grid table Matrix
warm 1.7×10*+ 1.63×10*! 2.7×10*,

cold 1.98×10*+ 2.42×10*! 3.2×10*,

AGS Snakes Tracking Times (sec)
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Current to Magnet Strength 
Calibration with Neural Network at 
the AGS Booster



Alternating Gradient Synchrotron (AGS) Booster
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• Pre-accelerate particles entering the AGS ring

• Accepts heavy ions from EBIS or protons from 
200 MeV Linac

• Serves as heavy ion source for NASA Space 
Radiation Laboratory (NSRL)

• 6 super-periods (A to F), 72 main magnets 



Magnet current to strength mapping
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• Magnet transfer function: mapping 
between the power supply (PS) current 
and the resulting strength of a magnet

• Example: 5th order polynomial for Booster 
quadrupoles

• Transfer functions are measured before 
the magnets were installed in the ring, and 
there is no existing way to verify them 
after installation.
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Ideal lattice

(𝐼./01 , 𝐼(233)!4#	combo, 
(𝐾./01 , 𝜃(233)!4# 

calculated with existing 
transfer functions 

Bmad

Simulation Data Acquisition

BPM orbit 
measurements

ML model

(𝐼./01 , 𝐼(233)!4#, 
then calculate 
(𝐾./01 , 𝜃(233)!4# 

Supervised Learning
Real machine

(𝐼./01 , 𝐼(233)3506 	
combo

Operation

Transfer function 
coefficients

Real Data Acquisition

Polynomial Fit

Calibration workflow
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Preliminary training result in one plane
• Input y orbit under different quadrupole PS currents → Output corresponding 

vertical quadrupole strength
• Initial data was collected with magnet settings within the linear range of the 

transfer function, working on collecting more data
• Trained on 800 data pairs, tested on 200 data pairs: accuracy = 99.5%



CAD script to get real orbit responses
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• Script development with Collider Accelerator 
Department (CAD) Controls Group

• FunctionEditor: send trapezoid-like time-
dependent function to corrector power 
supplies

• Script sets three corrector settings: positive, 
zero, negative; and save corresponding orbits



Booster magnet misalignment
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• Magnet location in real machine from 2015 survey data
 

• Misalignment data for quadrupoles and dipoles
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Booster orbit response mapping
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• Control: power supply currents of quadrupoles and correctors

• Parameter 𝜙: other parameters that affect the orbit but not in our control (e.g., main magnet 
current, magnet misalignment…)

• Output: orbit at the BPMs with certain current configuration

• To Do: 
• determine what goes in 𝜙 (e.g., magnet misalignment), and their range of values + errors
• determine if controls have error distribution (setpoint vs measured)
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Neural network for orbit response mapping
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• Neural network is better long-term (and on bigger machine) due to faster speed

• Parameters 𝜙 can be inferenced from real orbit data

• Need to figure out a good sampling method due to tune resonance constraints on 𝐼-./0

• Working with applied math experts on how to best handle model building and inferences

𝑁𝑁



Bmad vs. Madx: offset definitions
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• Rotation around y axis: x_pitch = dtheta, around x axis: y_pitch = - dphi 

• Note: x_pitch and y_pitch rotations are about the center of the element, dtheta and dphi 
misalignments rotate around the entrance point

• Rotation around z axis: tilt = dpsi or tilt

Bmad MAD-X



Quad offset: QVD1
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Location S (m) dX (mm) dY (mm) dZ (mm)
upstream 0.989875 -1.7853929 -0.0085697 -1.7853929

downstream 1.493875 -1.8057309 -0.0074198 -1.2771865

dtheta = -4.045e-5 rad
dphi = 2.28e-6 rad
dpsi/tilt = 4.039e-5 rad

x_pitch = -4.045e-5 rad
y_pitch = -2.28e-6 rad
tilt = 4.039e-5 rad

• Bmad misalign w.r.t. 
element center, Madx 
misalign w.r.t. element start

• Bmad offsets → average 
offsets

• Madx offsets → upstream 
offsets



Add misalignment to all magnets
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• Bmad misalign w.r.t. element center, Madx misalign w.r.t. element start

• Bmad offsets → average offsets, Madx offsets → upstream offsets

• Tracking results agree after adding offsets and rotations



Sample data in tune space

33

• Sample non-zero H & V quadrupole 
settings that don’t hit a resonance

• Quadrupole PS current range 0 – 400 A

• Produce double-plane orbit response 
without hitting resonance



Preliminary training result in both planes
• The ends are less accurate in both planes

• Preliminary results, need more exploration on best model structure
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Future work: Optimization with ML
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Control parameters 
+ Environmental 

factors 

Evaluation Metric (e.g., 
agreement with real 

measurements)

Neural Network

Bayesian Optimization
Find best settings for 
desired machine state
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