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Motivation: Better Diagnostics Inherently Linked to Better Beams 
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Need advanced methods to obtain information about the beam at unprecedented levels of detail and speed
à important for fine customization/control, user analysis, and improving physics models

Available here

ABP Grand Challenges
 

Intensity – “How do we increase beam intensity by 
orders of magnitude?”

Quality – “How do we increase the beam phase space 
density by orders of magnitude?”

Control – “How do we measure and control the beam 
distribution down to the individual particle level?”

Prediction – “How do we develop predictive ‘virtual 
particle accelerators’”

Two major categories of need motivate machine learning 
(ML) enhanced tools in accelerators:

• New fundamental capabilities in beam production 
and control: attaining unprecedented beam parameters, 
finely-detailed customization and characterization of beams
 

• Facility operations: efficiency of tuning and quality of 
beam delivery for scientific users à increase science 
output, reduce time-to-discovery

https://science.osti.gov/hep/-/media/hep/pdf/2022/ABP_Roadmap_2023_final.pdf


Virtual Diagnostics ßà  Virtual Accelerators

Many long-standing efforts to make “virtual accelerators” 
that closely match machine behavior
• Predict machine behavior that isn’t directly accessible 
• Related to the idea of “digital twins” when combined 

with tracking/adapting to changes in the system

A “virtual diagnostic” is an extension of this concept
• Predict beam output in cases where a diagnostic does 

not exist, is destructive, or updates more slowly than 
desired

• Machine learning enables new capabilities in prediction 
à do not need a physics model, just need sufficiently well-
correlated measurements
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ML beam prediction
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Virtual Diagnostics ßà ML-Enhanced Diagnostics
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Virtual Diagnostics ßà ML-Enhanced Diagnostics
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Virtual Diagnostics ßà ML-Enhanced Diagnostics
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Virtual Diagnostics ßà ML-Enhanced Diagnostics
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Online Models / Virtual Accelerators as a type of  “Virtual Diagnostic”
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LCLS-II live sim: run on HPC and display in control room
Updates every 3-8 mins, space charge included, uses LUME-IMPACT

Used combination of online physics simulation and Bayesian optimization algorithms to aid LCLS-II injector commissioning

Adjust settings / ranges with insight from predictions

Readings from machine via EPICS 
injector settings, laser profile from VCC image 

Physicists’ intuition aided by detailed online physics model à simple example of how a “virtual accelerator” can aid tuning
HPC enables fundamentally new capabilities in what can be realistically simulated online

Best emittance yet obtained during 
LCLS-II injector commissioning

 

despite extensive previous hand-tuning 

Hand over to ML-based optimization for fine tuning

Bayesian optimization

Model learns 
on-the-fly
(no prior
data)

emittance and beam sizes along z

OTR0H04

z-E

x-ycathode x-y

https://www.lume.science/


• ML models trained on detailed IMPACT simulations over entire valid range of 
injector settings and drive laser settings
 

• Several models with different combinations of output tailored to specific need 
(phase space prediction, emittance/match, beam sizes, etc.)
 

• Using to develop/prototype new algorithms before testing online 
(e.g. 20x speedup in emittance tuning: https://arxiv.org/abs/2209.04587)
 

• Will be deployed online for prediction of beam phase space and Twiss parameters

prototyping 
optimization
algorithms

Example of Faster Execution with ML: LCLS Injector

ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model 
adaptation under new conditions, and can directly aid online tuning and operator decision making

Automatic adaptation of models and identification of sources of 
deviation between simulations and as-built machine

interactive model widget 
and visualization tools

ML model matches 
simulation under 

interpolation 
Simulation and ML model trained 
on it are qualitatively similar to 

measurements under interpolation

https://arxiv.org/abs/2209.04587


LCLS Virtual Diagnostic Example: Fill in Missing Shots
• Used correlations with simpler/faster diagnostics to fill in predictions for 

more complex, slowly-updating diagnostics
 

• Good agreement between predicted and measured spectra for neural 
network
 

• For LCLS-II, going to much higher repetition rates (MHz beam rate) 
à ongoing work in edge ML for fast data reduction and reconstruction
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A. Sanchez-Gonzalez, et al., Nature Communications, (2017)

https://www.nature.com/articles/ncomms15461


FACET-II Longitudinal Phase Space Virtual Diagnostic
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• LPS tuning critical for FACET science program

• LPS measurement is destructive à cannot be measured with TCAV and 
simultaneously used for experiments

C. Emma

• ‘Virtual TCAV’ gives non-destructive 
prediction of beam LPS in experimental 
area 

• Simulations indicate incorporation of 
non-destructive spectral information 
could enable prediction beyond the 
TCAV resolution 

C. Emma, et al. – PRAB 21, 112802 (2018)

Initial experimental demonstration of LPS
 prediction with data from LCLS

A. Hanuka et al, Sci. Reports11, 2945 (2021)



FACET-II Longitudinal Phase Space Virtual Diagnostic
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First experimental results demonstrate ML-based current profile + bunch length prediction at FACET-II

FACET-II experimental demonstration at low charge (0.5 nC)

C. Emma

• LPS tuning critical for FACET science program

• LPS measurement is destructive à cannot be measured with TCAV and 
simultaneously used for experiments

• ‘Virtual TCAV’ gives non-destructive 
prediction of beam LPS in experimental 
area 

• Simulations indicate incorporation of 
non-destructive spectral information 
could enable prediction beyond the 
TCAV resolution 



• TCAV used to measure current 
profile and characterize shot-to-
shot current/bunch length 
variations in the injector

• Bunch length variations 
correlated with injector RF, 
magnet, laser parameters

• ML model used to predict 
changes in the bunch length from 
non-destructive inputs

• Non-destructive LPS diagnostic 
to be used for tuning/data 
analysis in upcoming runs

ML based diagnostic successfully predicts bunch length at the injector exit. Extension to 2D LPS to follow this year.

LPS Predictions at FACET-II Injector
C. Emma



Neural network prediction of FWHM bunch length and longitudinal phase space in FACET-II 
experimental area

ML based LPS diagnostic feasibility demonstrated at FACET-II. Upcoming work focused on robustness + multiple 
locations/beam configurations.

C. Emma



Virtual Diagnostics ßà ML-Enhanced Diagnostics
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X. Ren et al., PRAB 2020

time à
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suppressed
lasing not
 suppressed

e- beam
e- beam loses energy
 to photon beam At LCLS routinely use XTCAV images to predict 

unmeasured photon beam power profile

Standard method uses estimated energy loss:
•  Slow/iterative and doesn’t work well into saturation 

(uses vertical slices of image)
• Needs an associated lasing-off image

Convolutional neural network (CNN) analysis:
•  Uses the whole image

•  Does not require a lasing-off reference
• Faster / more accurate than standard reconstruction 

technique
• Can be used into saturation regime

Simple example of ML-enhanced analysis for photon beam power profile à needs more work to ensure robustness

ML-Based Analysis of XTCAV Images for X-ray Power Profile



Single-Shot Emittance Monitoring
• Want a single-shot, non-destructive diagnostic 

that is “always on”

• Radiation from dogleg: theory suggests can be 
sensitive to x and y emittance, energy spread

• On-the-fly ML-based image analysis extracts 
beam emittance, mismatch from radiation 
pattern

• Push analysis to “the edge” to get rapid (10 Hz) 
beam quality quantification

• Working on single-image emittance 
measurement in BC11 at FACET-II;  exploring 
applications to LCLS-II
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Robbie Watt, Brendan O’Shea, Doug Storey, Carsten Hast

Simulation

Simulation

Non-destructive single shot diagnostic will use ML-analysis to give emittance evolution along accelerator



Injector emittance diagnostic – first results
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• Initial measurement data taken at injector dog-leg
• ML-based methods extract SR pattern from noisy data

• Noise filtering improves fitting and reduces uncertainty in 
extracted beam parameters

• First results of ML-based image analysis reproduce expected 
results from simulation and traditional diagnostic measurements

ML-based noise 
reduction

ML-based image analysis reproduces expected results from e-beam tracking simulations and traditional 
diagnostic measurements.

Data from edge rad camera 4/19/22 Noise filtered image Simulation

R. Watt, B. O’Shea



Virtual Diagnostics ßà ML-Enhanced Diagnostics
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Finding Sources of Error Between Simulations and Measurements
Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these  to get better understanding of machine performance 

à ML model allows fast / automatic exploration of error sources in high dimension

10

First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups

injector
settings

laser image

adaptable calibration
transforms

longitudinal/
transverse phase space

Without 
calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 
solenoid strength found 
automatically with 
neural network model 
(trained first in 
simulation, then 
calibrated to machine)

frozen neural network 
layers trained on 
simulation

Speed of ML models enables rapid identification of error sources between idealized physics simulations and real machine 
à path toward gaining insights into machine performance



Continuous Feedback to Adaptively Tune Models
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A. Scheinker, JINST 16 P10008 (2021)

A. Scheinker and S. Gessner, PRAB 18, 102801 (2015)



Phase Space Reconstruction with Differentiable Tracking Simulations
Differentiable pipeline for reconstructing 6D phase space 
distribution using neural network parameterization

Reconstruct 4D phase space 
distribution + approx. energy 
spread from simple beamline 
diagnostic and 10 measurements

Simulation
Experiment

Confidence estimates

See J.P.’s talk 
from Tuesday

ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space 
diagnostics in a way that is computationally-efficient and sample-efficient



Summary/Conclusions
ML and HPC enable wide array of  “virtual diagnostic” capabilities, including 
detailed online physics simulations tied to the control system

- Used online IMPACT model for LCLS-II commissioning (3-8 min execution)
- Neural network system models: ms execution and adaptive tuning of models

ML combined with differentiable simulation techniques enables beam 
characterization with a high level of detail and minimal data

- Have demonstrated unprecedented capabilities in detailed phase space 
reconstruction for simple quadrupole scan measurement

- Opens up new way of thinking for what a diagnostic can be

Shot-to-shot ML-enhanced diagnostics at FACET-II will provide continuous 
predictions of beam quality (longitudinal and transverse)

- Will aid both beam control and user analysis for experiments
- Good progress on experimental results so far à full steam ahead!

 

Still much work ahead for ML-enhanced diagnostics in practice 
- Ensuring reliability of predictions and uncertainty estimates under changing 

conditions (i.e. distribution shift)
- MLOps and related software infrastructure for regular 

deployment/maintenance (track performance of and update ML components as 
needed)
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Finding Sources of Error Between Simulations and Measurements
Many non-idealities not included in physics simulations:
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First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups
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Backups
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Efficient Characterization of FACET-II Injector

• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan
  

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match. 
 

• Example of integrated cycle between characterization, modeling, and 
optimization à now want to extend to larger system sections and new setups

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-
balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.
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transverse phase space

Automatic Exploration
(constrained to useful values 

of emittance and match)

Comprehensive ML 
Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

x-y emit, 
match, 
and 
beam 
images

FACET-II Injector

x

y



Uncertainty Quantification / Robust Modeling / Model Adaptation

Major area of AI/ML research: statistical distribution shift between 
training and test data degrades prediction

 

Distribution shift is extremely common in accelerators, due to both 
deliberate changes in beam configuration and uncontrolled or hidden 

variables

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

unseen region

model input

co
un

ts

training set new conditions

model input

co
un

ts

  Example: beam size prediction and uncertainty estimates under drift from a neural network 
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty 



Sample Number (Time Ordered)

Neural network with quantile 
regression predicting FEL pulse 
energy at LCLS

unseen 
regions

test 
data

L. Gupta

BNN Predictions
ASTRA Simulation

White area 
– values 
left out of 
training

A. Mishra et. al., PRAB, 2021
LCLS injector transverse phase space  (ensemble)

Scalar parameters for the 
LCLS-II injector

(Bayesian neural network)

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics) 
Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

longitudinal phase space
(quantile regression + ensemble)

In-distribution

Out-of-distribution 

O. Convery, et al., PRAB, 2021

Uncertainty Quantification / Robust Modeling



Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Data 
processing

Data 
processing

FACET-II LCLS

Data 
processing

Data 
processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 
combining algorithms efficiently)

Making good progress toward this vision with open-source, modular software tools



Community development of re-usable, 
reliable, flexible software tools for 
AI/ML workflows has been essential to 

maximize return on investment and ensure 
transferability between systems

  

 Modularity has been key: separating 
different parts of the workflow + using 

shared standards

Modular, Open-Source 
Software Development

Different software for different tasks:
 

Optimization algorithm driver (e.g. Xopt)
 

Visual control room interface (e.g. Badger)
 

Simulation drivers (e.g. LUME)
 

Standards model descriptions, data formats, 
and software interfaces (e.g. openPMD)

 

Online model deployment (LUME-services)

Online Impact-T simulation and 
live display; trivial to get running 
on FACET-II using same software 

tools as the LCLS injector 

LCLS

FACET-II

standard
data 

format
LUME

More details at https://www.lume.science/ 

Simulation

Optimizer

Modular open-source software has been essential for our work.  We welcome new users and contributors.

https://www.lume.science/


LUME-services:  An online modeling service built on microservices

• LUME-services is a Python package providing data APIs for inter-
service interactions and user tooling

• Models are pip-installable Python packages and templates may be 
auto-generated using the LUME-services tools

• Models run in containers when a user schedules a workflow run

• The template provides Continuous Integration (CI) tools (e.g.
GitHub actions) for users to use for testing and deployment

• Have demoed for a variety of physics sims and ML models at SLAC 
à now testing / improving for new cases

• Have not yet integrated MLOps components (e.g.
continuous/triggered automated model adaptation)

• Resources:
• lume-services https://slaclab.github.io/lume-services/demo/ 
• lume-model https://slaclab.github.io/lume-model/ 
• lume-epics https://slaclab.github.io/lume-epics/ 
• distgen https://github.com/ColwynGulliford/distgen 

Interface for packaging arbitrary models, model registry

Enforcement of minimal metadata (model descript, owner, model type, PVs)

Ability to scale to arbitrary number of models and clients

Result storage + programmatic IOC for model results

Infrastructure for reliable, continuous online model deployment and model version tracking / updating
Aimed for transferrable design between platforms à we welcome collaborators!

work 
in p

rogre
ss

https://slaclab.github.io/lume-services/
https://slaclab.github.io/lume-services/demo/
https://slaclab.github.io/lume-model/
https://slaclab.github.io/lume-epics/
https://github.com/ColwynGulliford/distgen

