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Motivation: Better Diagnostics Inherently Linked to Better Beams

Two major categories of need motivate machine learning

(ML) enhanced tools in accelerators: (~ )
* New fundamental capabilities in beam production ABP Grand Cha"enges
and control: attaining unprecedented beam parameters, . . . .
finely-detailed customization and characterization of beams Intensity - "How do we increase beam intensity by
orders of magnitude?”
* Facility operations: efficiency of tuning and quality of
beam delivery for scientific users = increase science Quality - “How do we increase the beam phase space
output, reduce time-to-discovery density by orders of magnitude?”
General Accelerator R&D Program Control - “How do we measure and control the beam
Accelera tor an d Beam distribution down to the individual particle level?”
PhySiCS Roadm ap Prediction - “How do we develop predictive ‘virtual
particle accelerators’”
DOE Accelerator Beam Physics Roadmap Workshop . . J
September 6-8,2022 - o Available here
.ot TR

Need advanced methods to obtain information about the beam at unprecedented levels of detail and speed

- important for fine customization/control, user analysis, and improving physics models


https://science.osti.gov/hep/-/media/hep/pdf/2022/ABP_Roadmap_2023_final.pdf

Virtual Diagnostics €-> Virtual Accelerators
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Many long-standing efforts to make ‘“‘virtual accelerators”
that closely match machine behavior

. Predict machine behavior that isn’t directly accessible v>

. Related to the idea of “digital twins” when combined
with tracking/adapting to changes in the system LS, o T T

A “virtual diagnostic” is an extension of this concept ( /L \ 5

. Predict beam output in cases where a diagnostic does
not exist, is destructive, or updates more slowly than R
desired I," diagnostic

. Machine learning enables new capabilities in prediction

- do not need a physics model, just need sufficiently well-
correlated measurements

’“_' beam prediction

non-destructive,
continuously-available
measurements



Virtual Diagnostics €= ML-Enhanced Diagnostics
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Virtual Diagnostics €= ML-Enhanced Diagnostics

Fast, detailed predictions of Fast analysis of complicated

quantities that aren’t diagnostic output
continuously available

ML model or fast - complicated ML-based
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value of interest

(e.g. emittance)
available
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system models informed ML model ; predictions different beam
to infer unseen Tdmon ‘

variables or beam update parameters based on error

behavior




Virtual Diagnostics €= ML-Enhanced Diagnostics

available

Fast, detailed predictions of
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continuously available

ML model or fast _r
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Online Models / Virtual Accelerators as a type of ‘“Virtual Diagnostic”

Used combination of online physics simulation and Bayesian optimization algorithms to aid LCLS-II injector commissioning

Readings from machine via EPICS
injector settings, laser profile from VCC image

LCLS-II live sim: run on HPC and display in control room
Updates every 3-8 mins, space charge included, uses LUME-IMPACT

v

— Hand over to ML-based optimization for fine tuning

Xopt LCLS-Il Emittance Optimization 2022-12-04
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Best emittance yet obtained during
LCLS-Il injector commissioning
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despite extensive previous hand-tuning

\_ Adjust settings / ranges with insight from predictions —

Z/

Physicists’ intuition aided by detailed online physics model = simple example of how a “virtual accelerator” can aid tuning

HPC enables fundamentally new capabilities in what can be realistically simulated online


https://www.lume.science/

RF Gun
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Example of Faster Execution with ML: LCLS Injector

* ML models trained on detailed IMPACT simulations over entire valid range of
injector settings and drive laser settings

Laser-Heater

* Several models with different combinations of output tailored to specific need
(phase space prediction, emittance/match, beam sizes, etc.)

000

Emittance

* Using to develop/prototype new algorithms before testing online q ;

Using to develop/p YP Igorithms bef ing onli D Screens/Wires

(e.g. 20x speedup in emittance tuning: https://arxiv.org/abs/2209.04587) - ) OTR2
*  Will be deployed online for prediction of beam phase space and Twiss parameters Deflector \
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ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model

adaptation under new conditions, and can directly aid online tuning and operator decision making



https://arxiv.org/abs/2209.04587

LCLS Virtual Diagnostic Example: Fill in Missing Shots

200+ electron bunch and x-ray fast monitors
20+ variables recorded for each shot

ot

i
T

I

* Used correlations with simpler/faster diagnostics to fill in predictions for [ e ] ;alrlldlzg . §
. . . \ i @ BERT
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A. Sanchez-Gonzalez, et al., Nature Communications, (2017)
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https://www.nature.com/articles/ncomms15461

FACET-Il Longitudinal Phase Space Virtual Diagnostic

C.Emma

FACET-II electron accelerator schematic
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LPS tuning critical for FACET science program

LPS measurement is destructive = cannot be measured with TCAV and

simultaneously used for experiments

‘Virtual TCAV’ gives non-destructive
prediction of beam LPS in experimental
area

Simulations indicate incorporation of
non-destructive spectral information
could enable prediction beyond the
TCAV resolution
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A. Hanuka et al, Sci. Reports| |, 2945 (2021)

Initial experimental demonstration of LPS
prediction with data from LCLS
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FACET-Il Longitudinal Phase Space Virtual Diagnostic

FACET-Il experimental demonstration at low charge (0.5 nC)

o /‘ 2nC FACET-II electron accelerator schematic o0 . . .
Gun ——Charge [nC] = 0.38 L2 Phase [deg]=-28.75 |
- - ML Prediction
BC14 BC20 2008
TCAV IP <150t
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Final Focus & (%

Experimental Area
10 GeV
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Livolt. 335MeV 5o 4.5GeV |34
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* LPS tuning critical for FACET science program 2 [ m]
340 T
* LPS measurement is destructive = cannot be measured with TCAV and J+M°“?"'°d _
320 H= ¥ Predicted Value, accuracy = 99 pct
simultaneously used for experiments 5 100 T
= (e) IR TRE LY - =
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32 e g g
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. . . 3
non-destructive spectral information g o 2
could enable prediction beyond the ® 060 065 070 075 080 085 %% 28 26 2 B 20
TCAV resolution Spectral intensity [a.u.] L2 phase [deg]

First experimental results demonstrate ML-based current profile + bunch length prediction at FACET-II



C.Emma

LPS Predictions at FACET-Il Injector

Current profile (measured) Bunch length variation (measured)
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ML based diagnostic successfully predicts bunch length at the injector exit. Extension to 2D LPS to follow this year.
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Neural network prediction of FWWHM bunch length and longitudinal phase space in FACET-II

experimental area

160 T T T T T T
—4—Measured Data
-§ ML Prediction, accuracy = 99 pct
E140¢t §
s
2
S 120 .
|
=
2
S - .
2 100
=
I
= 8ot -
60 1 1 1 1

-40 -38
L2 phase [deg]

TCAV measurement
L2 Phase [deg]=-44.00 Data

TCAV measurement

TCAV measurement

L2 Phase [deg]=-37.00 Data

L2 Phase [deg]=-33.00 Data

102 102 102 o

Z101 =101 > 0.1

<3 < <

> 10 > 10 > 10

- - -

2 99 2 99 2 99

s} s} 3l R

9.8 9.8 9.8
100 200 300 400 100 200 300 400 100 200 300 400
z [ m] Z [pe m] z [ m]
ML prediction ML prediction ML prediction

10.2 10.2 102 g
> 10.1 >10.1 > 10.1
S <) o
= 10 > 10 = 10
§ § g
= 99 e 99 s 99
m = 53]

9.8 9.8 9.8

100 200 300 400 100 200 300 400 100 200 300 400
z[pm] z[pm] z[pm]

ML based LPS diagnostic feasibility demonstrated at FACET-1l. Upcoming work focused on robustness + multiple

locations/beam configurations.



Virtual Diagnostics €= ML-Enhanced Diagnostics

Fast, detailed predictions of
quantities that aren’t
continuously available

ML model or fast

beam prediction

\

physics model

available
measurements

Active tuning of
system models
to infer unseen
variables or beam

Physics model or physics-
informed ML model

@/ beam diagnostic

.

Fast analysis of complicated
diagnostic output

ML-based

complicated

analysis
value of interest
(e.g. emittance) )

update parameters based on error

' measurements
i predictions

different beam

behavior

prediction ‘




ML-Based Analysis of XTCAYV Images for X-ray Power Profile

gun L1X

lasing
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lasing not
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L2-linac

) XTCAV
L3-linac \

BC C

Lsomev B243Gev  14Gev  untulator

s e e- beam loses energy
to photon beam

0 o
1055

K o )
time 2>

At LCLS routinely use XTCAYV images to predict
unmeasured photon beam power profile

Standard method uses estimated energy loss:

* Slowliterative and doesn’t work well into saturation
(uses vertical slices of image)

5 = o * Needs an associated lasing-off image

-20 -10 0 -50
t[fs] t[fs]

== Ground Truth 80

== Ground Truth == Ground Truth
= TREX RRMSE=0.192 10 =+ TREX RRMSE=0.362

ReX RkSE=0.1 ReX RSE=0 35 ’ i Semweons| Convolutional neural network (CNN) analysis:
s = —_— = 60 A n — CNN RRMSE=0.342 .
; . i * Uses the whole image
* Does not require a lasing-off reference
Faster / more accurate than standard reconstruction
technique
* Can be used into saturation regime

Power[GW]

Power[GW]
w
Power[GW]

0 i g

tifs]
X. Ren et al., PRAB 2020

Simple example of ML-enhanced analysis for photon beam power profile 2 needs more work to ensure robustness



Robbie Watt, Brendan O’Shea, Doug Storey, Carsten Hast

Single-Shot Emittance Monitoring

*  Want a single-shot, non-destructive diagnostic
that is “always on”

s v s = Simulation
o i

Bona 1
NS 6X 39
* Radiation from dogleg: theory suggests can be ;

sensitive to x and y emittance, energy spread

e On-the-fly ML-based image analysis extracts

beam emittance, mismatch from radiation ) , !.f... l/iﬁj'ﬂ’ﬁ'&
pattern \ \ [/ [l

| — |
//‘ B . t‘
//4 . -

4 radiéti W

/
QN

on

*  Push analysis to “the edge” to get rapid (10 Hz) — /,
beam quality quantification

N

Simulation

*  Working on single-image emittance
measurement in BCI | at FACET-Il; exploring
applications to LCLS-II

Non-destructive single shot diagnostic will use ML-analysis to give emittance evolution along accelerator



R Watt, B. O’Shea
Injector emittance diagnostic - first results

Data from edge rad camera 4/19/22 Noise filtered image Simulation
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* Initial measurement data taken at injector dog-leg
* ML-based methods extract SR pattern from noisy data

* Noise filtering improves fitting and reduces uncertainty in

extracted beam parameters
4 x ML + Edge Radiation

eTraditional Diagnostic

Emittance [um]
(ML + Edge Radiation)

* First results of ML-based image analysis reproduce expected
results from simulation and traditional diagnostic measurements

4 5 6 7 8 9 10 11 12

Emittance [um] (Traditional)

ML-based image analysis reproduces expected results from e-beam tracking simulations and traditional

diagnostic measurements.



Virtual Diagnostics €= ML-Enhanced Diagnostics

Fast, detailed predictions of Fast analysis of complicated

quantities that aren’t diagnostic output
continuously available

ML model or fast complicated ML-based
physics model beam prediction beam diagnostic analysis
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available
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to infer unseen Tdmon ‘

variables or beam update parameters based on error

behavior




Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) giz : g E%:SC_T'T . j
time-varying changes (e.g. temperature-induced phase calibrations) éo:s L .
Want to identify these to get better understanding of machine performance EZj ’
- ML model allows fast / automatic exploration of error sources in high dimension 2 :: (‘f‘;"/l;_’;?;’ttion

0.45 0.46 0.47 0.48 0.49 0.50

Integrated Solenoid Field (kG-m)
frozen neural network

] . . adaptable calibration layers trained on l
Example: calibration transforms simulation Ll
offset in injector A ’,-’ 'L';l:::srad . ' — OxNN {
i . u =124 IMPACT-T
solenOId'strengt_h found injector output beam Laser spot sizes g : ZX meas i
automatically with settings scalars Pulse length g:;‘fn”:isze ) =101 x meas.
Charge ’ N
neural network model Sole foi g Emittance (x,y) n 08
(trained first in LOA phase Bunch length 5 o0
simulation, then LOB phase 2 04
calibrated to machine) 2%2323 Z 02
laser image longitudinal/ 6 matching quads 0o With calibration
transverse phase space 044 045 046 047 048 049 050

Integrated Solenoid Field (kG-m)

Speed of ML models enables rapid identification of error sources between idealized physics simulations and real machine

- path toward gaining insights into machine performance




Continuous Feedback to Adaptively Tune Models
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Phase Space Reconstruction with Differentiable Tracking Simulations

Differentiable pipeline for reconstructing 6D phase space
distribution using neural network parameterization

Randomly Generated
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ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space

diagnostics in a way that is computationally-efficient and sample-efficient




Summary/Conclusions

ML and HPC enable wide array of “virtual diagnostic” capabilities, including
detailed online physics simulations tied to the control system

- Used online IMPACT model for LCLS-Il commissioning (3-8 min execution)
- Neural network system models: ms execution and adaptive tuning of models

ML combined with differentiable simulation techniques enables beam
characterization with a high level of detail and minimal data
- Have demonstrated unprecedented capabilities in detailed phase space

reconstruction for simple quadrupole scan measurement
- Opens up new way of thinking for what a diagnostic can be

Shot-to-shot ML-enhanced diagnostics at FACET-II will provide continuous
predictions of beam quality (longitudinal and transverse)

- Will aid both beam control and user analysis for experiments
- Good progress on experimental results so far - full steam ahead!

Still much work ahead for ML-enhanced diagnostics in practice

- Ensuring reliability of predictions and uncertainty estimates under changing
conditions (i.e. distribution shift)

- MLOps and related software infrastructure for regular
deployment/maintenance (track performance of and update ML components as
needed)
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Efficient Characterization of FACET-Il Injector

O\ Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

v
X-y emit,
—— match,
and
beam

images

Automatic Exploration
(constrained to useful values
of emittance and match)

A

Solenoid + Quadrupoles

Faraday Cup

adrupoles

LOoa

Quadrupoles

Jo|

Quadrupoles
LOb

|
-

A 4

[ Comprehensive ML ] FACET-I Injector

Models of Injector

. . . . . . . transverse phase space
* Used Bayesian Exploration for efficient high-dimensional characterization (10 p P

variables) of emittance and match at 700pC: 2 hrs for 10 variables compared
to 5 hrs for 4 variables with N-D parameter scan

B %

¢ Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

* Example of integrated cycle between characterization, modeling, and
optimization - now want to extend to larger system sections and new setups

Predicted Measured

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-

balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.



Uncertainty Quantification / Robust Modeling / Model Adaptation

Major area of AlI/ML research: statistical distribution shift between

training set new conditions
training and test data degrades prediction

8 8

c c

Distribution shift is extremely common in accelerators, due to both 8 8

. . . . O (O]

deliberate changes in beam configuration and uncontrolled or hidden

variables model input model input

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty

175 Measured

Predicted (Ensemble Mean)
150

1IN

unseen reglon
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Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally




Y} scatea

Uncertainty Quantification / Robust Modeling

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics)
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Current approaches
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Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,

combining algorithms efficiently)

2 Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster
=% P | (e.g. SDF at SLAC,
vl & i , _ NERSC at LBNL)
< U3 g Online Modeling

C
5

Measured Input Data Data High-fidelity Physics
(accelerator settings, processing Simulations

input diagnostics)

Cluster Compute
(CPU,GPU)
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Adaptive ML Models
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EPICS
Control

Measured Output Data Data
(scalars, images processing
describing the beam)
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Making good progress toward this vision with open-source, modular software tools



Modular, Open-Source
Software Development

Community development of re-usable,

reliable, flexible software tools for

Al/ML workflows has been essential to
maximize return on investment and ensure

transferability between systems

Modularity has been key: separating
different parts of the workflow + using
shared standards

Xopt.step()

Pass sample(s) to be evaluated

Generator Evaluator
VOC S Generates sample + Evaluates

Defines variables, points objective function

objectives and
constraints

Retrieve result(s), handle errors, add data to generator, store results etc.

vocs: algorithm:
name: TNK test name: bayesian_exploration
variables: Optlong:_ .
x1: [0, 3.14159] n_initial_samples: 5
x2: [0, 3.14159] nEEes A
objectives: {yl: MINIMIZE} generator_options:
constraints: :
c1l: [GREATER_THAN, 0] #Slgma:.
c2: ['LESS_THAN', 0.5] use_gpu:

batch_size: 1
[[0.01, @.0],
False

Different software for different tasks:
Optimization algorithm driver (e.g. Xopt)
Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME)

Standards model descriptions, data formats,
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

More details at https://www.lume.science/

Optimizer
standard
LUME data

/

Simulation °'°FJI6 format [ERCEELS
Impact
ASTRA } gen_1.json X
GPT
Bmad v root:
G . » variables:
enesis generation: 1
SRW » vocs:

» error: [] 1241 items
» inputs: [] 1241 items
» outputs: [] 1241 items

Online Impact-T simulation and

live displays; trivial to get running

on FACET-II using same software
tools as the LCLS injector

Modular open-source software has been essential for our work. We welcome new users and contributors.


https://www.lume.science/

LUME-services: An online modeling service built on microservices

* LUME-services is a Python package providing data APIs for inter-
service interactions and user tooling

* Models are pip-installable Python packages and templates may be
auto-generated using the LUME-services tools

®* Models run in containers when a user schedules a workflow run

* The template provides Continuous Integration (Cl) tools (e.g.
GitHub actions) for users to use for testing and deployment

* Have demoed for a variety of physics sims and ML models at SLAC Model Registry  Job e ™ BosuksDaisbans Vel Sipening,  OupSaee
ervice

- now testing / improving for new cases \_ J

* Have not yet integrated MLOps components (e.g.
continuous/triggered automated model adaptation)

* Resources:

* |ume-services https:/slaclab.github.io/lume-services/demo/ Interface for packaging arbitrary models, model registry
* lume-model https:/slaclab.github.io/lume-model/ Enforcement of minimal metadata (model descript, owner, model type, PVs)
* lume-epics https://slaclab.github.io/lume-epics/ Ability to scale to arbitrary number of models and clients

* distgen https://github.com/ColwynGulliford/distgen

Result storage + programmatic I0C for model results

Infrastructure for reliable, continuous online model deployment and model version tracking / updating

Aimed for transferrable design between platforms - we welcome collaborators!


https://slaclab.github.io/lume-services/
https://slaclab.github.io/lume-services/demo/
https://slaclab.github.io/lume-model/
https://slaclab.github.io/lume-epics/
https://github.com/ColwynGulliford/distgen

