Detailed Phase Space Reconstruction using Neural Networks and Differentiable Simulations

Physics and Applications of High Brightness Beams
San Sebastián, Spain - June 20th, 2023
Juan Pablo Gonzalez-Aguilera* (UChicago)
Ryan Roussel, Auralee Edelen, Christopher Mayes, Daniel Ratner (SLAC)
Seongyeol Kim, John Power, Eric Wisniewski (ANL)

BRIGHT BEAMS

Manipulating Beams in Phase Space

Manipulating Beams in Phase Space

General Accelerator R\&D Program

Accelerator and Beam Physics Roadmap

DOE Accelerator Beam Physics Roadmap Workshop September 6-8, 2022

Detailed measurement of beam phase space distribution is important!

Phase space distribution measurements

Usual Approaches

Simple quad scan:

- rotate beam by scanning focusing strength
- measure the beam size
- Fit and solve for ε

Usual Approaches

Usual Approaches

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (single-shot 2D)
- Moving slit (multiple measurements)

Usual Approaches

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (sinale-shot 2D)
- Mc - Fast
- Not as detailed as we would like
- Design considerations for different beam sizes / charges
- Wastes information: only uses beamlets intensities, positions and sizes

Power. J. et al PAC07, 2007

Usual Approaches

Simple quad scan:

- rotate beam by scanning focusina strenath

- me - Fast
- Fit - Not detailed

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (sinale-shot 2D)
- Md - Fast
- Not as detailed as we would like
- Design considerations for different beam sizes / charges
- Wastes information: only uses beamlets intensities, positions and sizes

Power. J. et al PAC07, 2007

Advanced tomographic methods:

- Maximum entropy tomography (MENT)
- Algebraic reconstruction (ART, SART)

Usual Approaches

Simple quad scan:

- rotate beam by scanning focusina strenath

- me - Fast
- Fit - Not detailed

Specialized diagnostics:

- pepper-pot (single-shot 4D)
- Multi-slit (sinale-shot 2D)
- Md - Fast
- Not as detailed as we would like
- Design considerations for different beam sizes / charges
- Wastes information: only uses beamlets intensities, positions and sizes

Power. J. et al PAC07, 2007

Advanced tomographic methods:

Streak beam at various angles and record the projections on a screen. 1 Set quadrupoles to obtain desired transverse

$\left.{ }^{\text {in }}{ }^{i}, \theta_{j}{ }^{\prime}\right)$.

- Maximum entropy tomography (MENT)
- Algebraic reconstruction (ART, SA • Very detailed

Phase Space Fitting as optimization problem

Simple quad scan:

Beam distribution is assumed to be elliptical.
Fully parametrized by $\sigma_{x x}, \sigma_{x p_{x}}, \sigma_{p_{x} p_{x}}$
Assume linear transport of elliptical beam

Beam sizes from screen downstream

$$
\begin{gathered}
\sigma_{x}^{2}=(1+d l k)^{2} \sigma_{11} \\
+2(1+d l k) \sigma_{12} \\
+d^{2} \boldsymbol{\sigma}_{22}
\end{gathered}
$$

Error of the quadratic fit

Result:

- Elliptical 2D phase space consistent with beam size measurements.

Phase Space Fitting as optimization problem

We want more detail:

- How do we parametrize the beam 6D phase-space distribution in a a flexible and learnable way?
- How do we run simulations that support optimization of extremely high dimensional problems ($\sim 1 \mathrm{k}$ parameters)?

Neural Network Parameterization of Beam Distributions

-6D phase space distribution parametrization that is

- flexible
- learnable

Fully connected NN with ~ O(1k) parameters

Differentiable Simulations (Automatic Differentiation)

Keep track of derivative information during every calculation step using the chain rule and memory.

Fast and accurate highdimensional gradients

Enables gradient-based optimization of model with respect to all free parameters.

Easily optimize models with >10k free parameters.

Differentiable Simulations (Automatic Differentiation)

Keep track of derivative information during every calculation step using the chain rule and memory.

Fast and accurate highdimensional gradients

Enables gradient-based optimization of model with respect to all free parameters.

Easily optimize models with $>10 \mathrm{k}$ free parameters.

Phase Space Reconstruction Pipeline

Synthetic Example

Synthetic beam distribution in simulation

Screen images

Synthetic Example Reconstruction

Detailed reconstruction of 4D

 phase space with only- a quadrupole and a screen
- ー ー - $50^{\text {th }}$ percentile ground truth
- 10 images
$----95^{\text {th }}$ percentile ground truth

Measuring Model Uncertainty

Create a snapshot ensemble to measure uncertainty by cycling the learning rate

Huang G. et al., ICLR 2017

Measuring Model Uncertainty

Create a snapshot ensemble to measure uncertainty by cycling the learning rate

(b)

Quadrupole:

$$
H=\frac{p_{x}^{2}+p_{y}^{2}}{2\left(1+p_{z}\right)}+\frac{k_{1}\left(p_{z}\right)}{2}\left(x^{2}-y^{2}\right)
$$

- Weak dependence on p_{z} via chromatic effects
- No dependence on z

Tomography Example from AWA

AWA Reconstruction Results

Conclusions

- 4D detailed phase space reconstruction from few measurements and without special diagnostics
- Neural Network beam parametrization and differentiable simulations are not limited by dimensionality.
- Potentially extensible to 6D with the addition of longitudinal diagnostics.
- Can incorporate heterogeneous measurements:
- More screens, BPMs, ...

Details: PRL 130, 145001 (2023)

- Different types of data

Thanks! Questions?

SLAC:

- Ryan Roussel
- Auralee Edelen
- Christopher Mayes
- Daniel Ratner

UChicago:

- Juan Pablo Gonzalez-Aguilera

Details: PRL 130, 145001 (2023)

- Eric Wisniewski

This work was supported by:

- DoE contract No. DE-AC02-76SF00515
- NSF award PHY-1549132, the Center for Bright Beams
- Physical Sciences Division Fellowship, The University of Chicago
- DoE contract No. DE-AC02-05CH11231, NERSC award BES-ERCAP0023724

Backup: Maximum Entropy Loss Function

Loss Function

$$
l=-\log \left[(2 \pi e)^{3} \varepsilon_{6 D}\right]+\lambda \frac{1}{N I J} \sum_{\text {Initial }} \sum_{n, i, j}^{N, I, J}\left|R_{n}^{(i, j)}-Q_{n}^{(i, j)}\right|
$$

No evidence

Weak evidence

Strong evidence

Backup: Maximum Entropy Tomography (MENT)

Rotate phase space as before, but reconstruct the distribution from 1D projections + maximize the beam distribution entropy Lagrange multiplier

$$
\rho^{*}=\arg \min \{-H(\rho)+\lambda f(\rho)\}
$$

Distribution entropy Discrepancy with measurement

Backup: Synthetic Example Reconstruction

| | Ground
 Parameter | rms
 truth | prediction | Reconstruction |
| :--- | ---: | :---: | :---: | :---: | Unit | | | | | |
| :--- | ---: | :---: | :---: | :---: |
| ε_{x} | 2.00 | 2.47 | 2.00 ± 0.01 | $\mathrm{~mm}-\mathrm{mrad}$ |
| ε_{y} | 11.45 | 14.10 | 10.84 ± 0.04 | $\mathrm{~mm}-\mathrm{mrad}$ |
| $\varepsilon_{4 \mathrm{D}}$ | 18.51 | 34.83^{a} | 17.34 ± 0.08 | $\mathrm{~mm}^{2}-\mathrm{mrad}^{2}$ |

Backup: AWA Reconstruction Results

Backup: AWA Reconstruction

Red border denotes test samples

Backup: Kernel Density Estimation (KDE)

Backup: Reverse vs Forward Autodiff

$\underline{\text { https://towardsdatascience.com/forward-mode-automatic- }}$

Backup: Memory profiling

Test 1: 10 quads separated by drifts. Peak memory vs number of particles

Backup: Memory profiling

Test 2: 10^4 particles Peak memory vs n quads

Backup: Memory profiling

Test 3: $10^{\wedge} 4$ particles
Peak memory vs n slices in single quad+drift

